Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Mutations to the OTOF gene are among the most common reasons for auditory neuropathy. Although cochlear implants are often effective in restoring sound transduction, there are currently no biological treatments for individuals with variants of OTOF. Previous studies have reported the rescue of hearing in DFNB9 mice using OTOF gene replacement although the efficacy needs improvement. Here, we developed a novel dual-AAV-mediated gene therapy system based on the principles of protein trans-splicing, and we show that this system can reverse bilateral deafness in Otof mice after a single unilateral injection. The system effectively expressed exogenous mouse or human otoferlin after injection on postnatal day 0-2. Human otoferlin restored hearing to near wild-type levels for at least 6 months and restored the release of synaptic vesicles in inner hair cells. Our study not only provides a preferential clinical strategy for the treatment of OTOF-related auditory neuropathies, but also describes a route of development for other large-gene therapies and protein engineering techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00439-022-02504-2 | DOI Listing |