98%
921
2 minutes
20
Wildfires have the potential to add considerably to the already significant challenge of achieving effective forest restoration in the UN Decade on Ecosystem Restoration. While fire can sometimes promote forest restoration (e.g. by creating otherwise rare, early successional habitats), it can thwart it in others (e.g. by depleting key patch types and stand structures). Here we outline key considerations in facilitating restoration of some tall wet temperate forest ecosystems and some boreal forest ecosystems where the typical fire regime is rare high-severity stand-replacing fire. Some of these ecosystems are experiencing altered fire regimes such as increased fire extent, severity and/or frequency. Achieving good restoration outcomes in such ecosystems demands understanding fire regimes and their impacts on vegetation and other elements of biodiversity and then selecting ecosystem-appropriate management interventions. Potential actions range from doing nothing (as the ecosystem already maintains full post-fire regenerative capacity) to interventions prior to a conflagration like prescribed burning to limit the risks of high-severity fire, excluding activities that impair post-fire recovery (e.g. post-fire logging), and artificial seeding where natural regeneration fails. The most ecologically effective actions will be ecosystem-specific and context-specific and informed by knowledge of the ecosystem in question (such as plant life-history attributes) and inter-relationships with attributes like vegetation condition at the time it is burnt (e.g. young versus old forest). This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661950 | PMC |
http://dx.doi.org/10.1098/rstb.2021.0082 | DOI Listing |
Tree Physiol
September 2025
Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.
View Article and Find Full Text PDFScientifica (Cairo)
August 2025
Department of Biology, School of Bioscience and Technology, College of Natural Sciences, Wollo University, Dessie, Ethiopia.
The gelada (), Ethiopia's only endemic primate and the last surviving graminivorous cercopithecid, was studied in Susgen Natural Forest, South Wollo, to examine seasonal variations in activity budgets and ranging ecology. From February to August 2023, encompassing both dry and wet seasons, 3519 behavioral scans were collected from 1680 group observations using instantaneous scan sampling at 15-min intervals (07:00-17:00 h). Data were analyzed with descriptive statistics and nonparametric tests (Kruskal-Wallis and Mann-Whitney ), while home ranges were mapped via minimum convex polygon (MCP) and kernel density estimation (KDE).
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
College of Life Sciences, Northwest Normal University, Lanzhou, China.
Nitrogen leaching is a major pathway of nitrogen fertilizer loss. Although arbuscular mycorrhizal (AM) fungi are known to reduce nitrogen leaching by improving plant nitrogen uptake, the soil-based mechanisms remain unclear. A pot experiment was conducted using a randomized complete block design, with four nitrogen levels (0, 3.
View Article and Find Full Text PDFBrief Bioinform
August 2025
College of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, P. R. China.
Drug-induced hepatotoxicity (DIH), characterized by diverse phenotypes and complex mechanisms, remains a critical challenge in drug discovery. To systematically decode this diversity and complexity, we propose a multi-dimensional computational framework integrating molecular structure analysis with disease pathogenesis exploration, focusing on drug-induced intrahepatic cholestasis (DIIC) as a representative DIH subtype. First, a graph-based modularity maximization algorithm identified DIIC risk genes, forming a DIIC module and eight disease pathogenesis clusters.
View Article and Find Full Text PDFFront Microbiol
August 2025
Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom.
Tropical rainforests support critical biogeochemical cycles regulated by complex plant-soil microbial interactions but are threatened by global change. Much of the uniquely biodiverse and carbon rich forest on Borneo has been lost through extensive conversion to monoculture plantation, and a significant proportion of the remaining forest has been heavily modified by selective logging. Ecological restoration of tropical forest aims to return forests to a near pristine state, but restoration initiatives are hindered by limited understanding of the underpinning plant-soil feedbacks, and impacts on soil microbial communities are unresolved.
View Article and Find Full Text PDF