Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objectives: The evident genotype-phenotype correlation shown by the X-linked Alport syndrome warrants the assessment of the impact of identified gene variants on aberrant splicing. We previously reported that single nucleotide variants (SNVs) in the last nucleotide of exons in COL4A5 cause aberrant splicing. It is known that the nucleotides located 2nd and 3rd to the last nucleotides of exons can also play an essential role in the first step of the splicing process. In this study, we aimed to investigate whether SNVs positioned 2nd or 3rd to the last nucleotide of exons in COL4A5 resulted in aberrant splicing.

Methods: We selected eight candidate variants: six from the Human Gene Variant Database Professional and two from our cohort. We performed an in-vitro splicing assay and reverse transcription-polymerase chain reaction (RT-PCR) for messenger RNA obtained from patients, if available.

Results: The candidate variants were initially classified into the following groups: three nonsense, two missense, and three synonymous variants. Splicing assays and RT-PCR for messenger RNA revealed that six of the eight variants caused aberrant splicing. Four variants, initially classified as non-truncating variants, were found to be truncating ones, which usually show relatively more severe phenotypes.

Conclusion: We revealed that exonic SNVs positioned 2nd or 3rd to the last nucleotide of exons in the COL4A5 were responsible for aberrant splicing. The results of our study suggest that attention should be paid when interpreting the pathogenicity of exonic SNVs near the 5' splice site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950164PMC
http://dx.doi.org/10.1007/s10157-022-02294-xDOI Listing

Publication Analysis

Top Keywords

aberrant splicing
20
2nd 3rd
16
positioned 2nd
12
3rd nucleotide
12
nucleotide exons
12
exons col4a5
12
variants
9
single nucleotide
8
nucleotide variants
8
col4a5 aberrant
8

Similar Publications

Background: Stickler syndrome (STL) is a group of related connective tissue disorders characterized by heterogeneous clinical presentations with varying degrees of orofacial, ocular, skeletal, and auditory abnormalities. However, this condition is difficult to diagnose on the basis of clinical features because of phenotypic variability. Thus, expanding the variant spectrum of this disease will aid in achieving a firm definitive diagnosis of STL.

View Article and Find Full Text PDF

Recursive splice sites are rare motifs postulated to facilitate splicing across massive introns and shape isoform diversity, especially for long, brain-expressed genes. The necessity of this unique mechanism remains unsubstantiated, as does the role of recursive splicing (RS) in human disease. From analyses of rare copy number variants (CNVs) from almost one million individuals, we previously identified large, heterozygous deletions eliminating an RS site (RS1) in the first intron of that conferred substantial risk for attention deficit hyperactivity disorder (ADHD) and other neurobehavioral traits.

View Article and Find Full Text PDF

Targeting a pathogenic cryptic exon that drives HLRCC to induce exon skipping.

Mol Ther Nucleic Acids

September 2025

Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant cancer predisposition syndrome driven by the loss of fumarate hydratase (FH) activity. Recently, we identified a pathogenic variant in intron 9 of the gene that disrupts splicing by creating a novel splice acceptor site, resulting in the aberrant inclusion of a cryptic exon. Inclusion of the cryptic exon introduces a premature termination codon, leading to loss of FH activity.

View Article and Find Full Text PDF

N6-methyladenosine (m6A) is the most prevalent internal mRNA modification, enriched in the CNS yet poorly characterized in glioma. Using long-read RNA sequencing, we mapped m6A in an glioma model following knockdown (KD) of the reader IGF2BP2, writer METTL3, and eraser ALKBH5, with naive glioma cells and astrocytes as controls. Glioma cells exhibited a two-fold reduction in global m6A, suggesting progressive loss from healthy to malignant states.

View Article and Find Full Text PDF

Mutations in the RNA splicing factor are among the most common in MDS and are strongly associated with MDS with ring sideroblasts (MDS-RS). While aberrant splicing of terminal erythroid regulators has been implicated in MDS pathogenesis, the impact of mutations on early hematopoietic progenitor function remains unclear. Here, we identify CDK8, a key kinase of the mediator complex involved in transcriptional regulation, as a recurrent mis-spliced target in -mutant MDS.

View Article and Find Full Text PDF