Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study revealed how Bacteria and Archaea communities and their metabolic functions differed between two groups of black deposits identified in gorge and cave environments. Scanning electron microscopy coupled with energy dispersive spectroscopy was used to analyse the presence of microbial biosignatures and the elemental composition of samples. Metabarcoding of the V3-V4 regions of 16S rRNA was used to investigate Bacteria and Archaea communities. Based on 16S rRNA sequencing results, PICRUSt software was used to predict metagenome functions. Micrographs showed that samples presented microbial biosignatures and microanalyses highlighted Mn concretions and layers on Al-Si surfaces. The 16S rRNA metabarcoding alpha-diversity metrics showed similar Simpson's and Shannon indices and different values of the Chao-1 index. The amplicon sequence variants (ASVs) analysis at the different taxonomic levels showed a diverse genera composition. However, the communities of all samples shared the presence of uncultured ASVs belonging to the Gemmatales family (Phylogenesis: Gemmataceae; Planctomycetes; Planctomycetota; Bacteria). The predicted metagenome functions analysis revealed diverse metabolic profiles of the Cave and Gorge groups. Genes coding for essential Mn metabolism were present in all samples. Overall, the findings on structure, microbiota, and predicted metagenome functions showed a similar microbial contribution to epigean and hypogean black deposits Mn metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653421PMC
http://dx.doi.org/10.1038/s41598-022-24159-9DOI Listing

Publication Analysis

Top Keywords

metagenome functions
16
black deposits
12
16s rrna
12
structure microbiota
8
epigean hypogean
8
hypogean black
8
bacteria archaea
8
archaea communities
8
microbial biosignatures
8
predicted metagenome
8

Similar Publications

A significant challenge in the field of microbiology is the functional annotation of novel genes from microbiomes. The increasing pace of sequencing technology development has made solving this challenge in a high-throughput manner even more important. Functional metagenomics offers a sequence-naive and cultivation-independent solution.

View Article and Find Full Text PDF

The metalloid tellurium (Te) is toxic to bacteria; however, the element is also extremely rare. Thus, most bacteria will never encounter Te in their environment. Nonetheless significant research has been performed on bacterial Te resistance because of the medical applications of the element.

View Article and Find Full Text PDF

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

Cancer is a multifaceted disease driven by a complex interplay of genetic predisposition, environmental factors and lifestyle habits. With the accelerating pace of cancer research, the gut microbiome has emerged as a critical modulator of human health and immunity. Disruption in the gut microbial populations and diversity, known as dysbiosis, has been linked with the development of chronic inflammation, oncogenesis, angiogenesis and metastasis.

View Article and Find Full Text PDF

Structure and function of the topsoil microbiome in Chinese terrestrial ecosystems.

Front Microbiol

August 2025

State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.

While soil microorganisms underpin terrestrial ecosystem functioning, how their functional potential adapts across environmental gradients remains poorly understood, particularly for ubiquitous taxa. Employing a comprehensive metagenomic approach across China's six major terrestrial ecosystems (41 topsoil samples, 0-20 cm depth), we reveal a counterintuitive pattern: oligotrophic environments (deserts, karst) harbor microbiomes with significantly greater metabolic pathway diversity (KEGG) compared to resource-rich ecosystems. We provide a systematic catalog of key functional genes governing biogeochemical cycles in these soils, identifying: 6 core CAZyme genes essential for soil organic carbon (SOC) decomposition and biosynthesis; 62 nitrogen (N)-cycling genes (KOs) across seven critical enzymatic clusters; 15 sulfur (S)-cycling genes (KOs) within three key enzymatic clusters.

View Article and Find Full Text PDF