98%
921
2 minutes
20
A safe and just operating space for socioecological systems is a powerful bridging concept in sustainability science. It integrates biophysical earth-system tipping points (ie, thresholds at which small changes can lead to amplifying effects) with social science considerations of distributional equity and justice. Often neglected, however, are the multiple feedback loops between self-identity and planetary boundaries. Environmental degradation can reduce self-identification with nature, leading to decreased pro-environmental behaviours and decreased cooperation with out-groups, further increasing the likelihood of transgressing planetary boundaries. This vicious cycle competes with a virtuous one, where improving environmental quality enhances the integration of nature into self-identity and improves health, thereby facilitating prosocial and pro-environmental behaviour. These behavioural changes can also cascade up to influence social and economic institutions. Given a possible minimum degree of individual self-care to maintain health and prosperity, there would seem to exist an analogous safe and just operating space for self-identity, for which system stewardship for planetary health is crucial.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S2542-5196(22)00217-0 | DOI Listing |
Br J Health Psychol
September 2025
Manchester Centre for Health Psychology, School of Health Sciences, University of Manchester, Manchester, UK.
Objective: This study applied the Theoretical Domains Framework (TDF) to explore the barriers and enablers to optimizing post-operative pain management and supporting safe opioid use from the perspectives of both patients and health care professionals, applying the Theoretical Domains Framework (TDF).
Design: Experience-based co-design (EBCD) qualitative study.
Methods: In the initial phase of the EBCD approach, focus groups were conducted comprising 20 participants, including 8 patients and 12 health care professionals involved in post-operative care.
Turk Kardiyol Dern Ars
September 2025
Division of Arrhythmia and Electrophysiology, Department of Cardiology, University of Health Sciences, Yuksek Ihtisas Cardiovascular Building, Ankara City Hospital, Ankara, Türkiye.
Objective: Transvenous lead extraction (TLE) is used in various clinical scenarios, such as device-related infections. Mechanically powered sheaths are one of the most commonly used tools for TLE procedures. We evaluated the procedural and clinical outcomes of a novel extraction technique for chronically implanted leads in the treatment of device-related infections.
View Article and Find Full Text PDFBrain Behav
September 2025
School of Physical Education and Health, Henan University of Chinese Medicine, Zhengzhou, China.
Background: Clinical and basic research suggests that exercise is a safe behavioral intervention and effective in improving cognition in vascular dementia (VD). However, despite global efforts, there is still no effective method to completely cure VD. This study aimed to investigate the effects of long-term exercise pretreatment on typical VD pathology in a rat model, and further compare the neuroprotective impacts of different exercise modalities on VD rats.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200070, China.
Wound infections challenge clinical medicine, and developing novel therapies is critically important in overcoming antimicrobial resistance and an off-balanced immune microenvironment. Electrical stimulation as a biocompatible, easy-to-operate, and controllable technique has great potential in eradicating pathogens and modulating the immune system. However, safe and soft platforms that integrate both bactericidal and immunological modulatory effects of electrical stimulation are rarely reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute of Colloid and Biointerface Science, Institute of Colloid and Biointerface Science, BOKU University, 1190 Vienna, Austria.
Implant-associated infections caused by bacterial biofilms remain a major clinical challenge, with high morbidity, often necessitating prolonged antibiotic therapy or implant revision surgery. To address the need for noninvasive alternatives, we investigated the use of alternating magnetic fields (AMFs) as a localized treatment modality for eradicating biofilms on titanium implant model surfaces. We demonstrate that AMF exposure effectively removes biofilms and kills bacteria at moderately elevated temperatures on the implant.
View Article and Find Full Text PDF