98%
921
2 minutes
20
Legumes, including lentil, are a valuable source of carbohydrates, fiber, protein and vitamins and minerals. Their nutritional characteristics have been associated with a reduction in the incidence of various cancers, HDL cholesterol, type 2 diabetes and heart disease. Among these quality parameters, lectins have been associated with reducing certain forms of cancer, activating innate defense mechanisms and managing obesity. Protease inhibitors such as trypsin and chymotrypsin inhibitors have been demonstrated to reduce the incidence of certain cancers and demonstrate potent anti-inflammatory properties. Angiotensin I-converting enzyme (ACE) inhibitor has been associated with a reduction in hypertension. Therefore, legumes, including lentils, should be part of our daily food intake. However, high temperatures at the terminal stage is a major abiotic constraint leading to a reduction in lentil yield and seed quality. Thus, the selection of heat-tolerant genotypes is essential to identifying the potential for high yields with stable performance. To select lentil genotypes, an experiment was conducted with 60 genotypes including local landraces, advanced breeding lines, commercial varieties and exotic germplasm under stress and non-stress conditions from 2019 to 2020. This study was followed by a subset study involving screening based on a few physicochemical parameters and reproductive traits along with field performances. Different tolerance indices (i.e., stress susceptible index (SSI), relative heat index (RHI), tolerance (TOL), mean productivity (MP), stress tolerance index (STI), geometric mean productivity (GMP), yield index (YI), yield stability index (YSI), heat-resistance index (HRI), modified stress-tolerance index (MSTI), abiotic tolerance index (ATI) and stress susceptibility percentage (SSPI)) were used for the selection of the genotypes along with field performance. Biplot analysis was further performed for choosing the most suitable indices. Based on principal components analysis, the GMP, MP, RRI, STI, YI, YSI, ATI and MSTI indices were identified as the most reliable stress indicators, and these indicators might be used for distinguishing heat-tolerant genotypes. Based on the stress indices, the genotypes BLX 05002-3, BLX 10002-20, LRIL-21-1-1-1-1, LRIL-21-1-1-1-1-6 and BLX 09015 were selected as the most stable and heat-tolerant genotypes. In contrast, the genotypes LG 198, Bagura Local, BLX 0200-08-4, RL-12-178, Maitree, 91517 and BLX 11014-8 were selected as the most heat sensitive. Data also exhibited an average yield reduction of 59% due to heat stress on the lentils. Moreover, eight heat-tolerant (HT) genotypes (BLX 09015, PRECOZ, LRL-21-112-1-1-1-1-6, BLX 05002-3, LR-9-25, BLX 05002-6, BARI Masur-8 and RL-12-181), and two heat-susceptible (HS) genotypes (BLX 12009-6, and LG 198) were selected from the screened genotypes and subjected to further analysis by growing them in the following year under similar conditions to investigate the mechanisms associated with heat tolerance. Comparative studies on reproductive function and physiochemical traits revealed significantly higher pollen viability, proline accumulation, relative water content, chlorophyll concentration and a lower membrane stability index in HT genotypes under heat stress. Therefore, these heat-tolerant genotypes could be used as the parents in the hybridization program for achieving heat-tolerant transgressive segregation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698439 | PMC |
http://dx.doi.org/10.3390/life12111719 | DOI Listing |
Biology (Basel)
August 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
To establish a systematic approach for evaluating heat tolerance at the seedling stage in broccoli, we investigated 14 representative cultivars cultivated in China. Physiological indicators such as electrical conductivity, malondialdehyde, proline, and chlorophyll content were measured before and after heat stress, alongside phenotypic scoring of heat injury, to characterize the differential thermotolerance among genotypes. The results indicated that significant differences ( < 0.
View Article and Find Full Text PDFJ Exp Bot
September 2025
Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Chair of Biochemistry, Staudtstrasse 5, 91058 Erlangen, Germany.
Potato (Solanum tuberosum L.) is a crucial global food crop, but high temperatures inhibit tuberization and reduce yield. To investigate heat tolerance genetics, a crossing population was created using the cultivars Annabelle (early tuber-forming, moderately heat-tolerant) and Camel (mid-early tuber-forming, heat-sensitive).
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Nuclear Institute for Agriculture and Biology College (NIAB-C), Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan.
Background: Escalating global temperatures pose an ongoing threat to cotton production by disrupting essential morphological, physiological, and metabolic processes during early plant development. These early stages are critical for crop establishment, yet the genetic basis of heat tolerance at this phase remains insufficiently characterized. Therefore, advancing our understanding of early-stage responses is essential for the development of heat-tolerant genotypes.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
This review synthesizes advances in livestock genomics by examining the interplay between candidate genes, molecular markers (MMs), signatures of selection (SSs), and quantitative trait loci (QTLs) in shaping economically vital traits across livestock species. By integrating advances in genomics, bioinformatics, and precision breeding, the study elucidates genetic mechanisms underlying productivity, reproduction, meat quality, milk yield, fibre characteristics, disease resistance, and climate resilience traits pivotal to meeting the projected 70% surge in global animal product demand by 2050. A critical synthesis of 1455 peer-reviewed studies reveals that targeted genetic markers (e.
View Article and Find Full Text PDFPLoS One
August 2025
Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, United States of America.
Increasing occurrences of episodic heat stress significantly affect crop quality traits, including those of chickpea (Cicer arietinum L.). The adverse effectof heat stress on seed quality was evaluated by cultivating eight chickpea genotypes under non-stress and heat stress conditions, with temperatures set at 25/15°C and 35/20°C, respectively.
View Article and Find Full Text PDF