Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study we investigated the effectiveness of air purifiers and in-line filters in ventilation systems working simultaneously inside various classrooms at the University of Southern California (USC) main campus. We conducted real-time measurements of particle mass (PM), particle number (PN), and carbon dioxide (CO) concentrations in nine classrooms from September 2021 to January 2022. The measurement campaign was carried out with different configurations of the purifier (i.e., different flow rates) while the ventilation system was continuously working. Our results showed that the ventilation systems in the classrooms were adequate in providing sufficient outdoor air to dilute indoor CO concentrations due to the high air exchange rates (2.63-8.63 h). The particle penetration coefficients (P) of the investigated classrooms were very low for PM (<0.2) and PN (<0.1), with the exception of one classroom, corroborating the effectiveness of in-line filters in the ventilation systems. Additionally, the results showed that the efficiency of the air purifier exceeded 95% in capturing ultrafine and coarse particles and ranged between 82-88% for particles in the accumulation range (0.3-2 µm). The findings of this study underline the effectiveness of air purifiers and ventilation systems equipped with efficient in-line filters in substantially reducing indoor air pollution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658982PMC
http://dx.doi.org/10.3390/ijerph192114558DOI Listing

Publication Analysis

Top Keywords

air purifiers
8
ventilation systems
8
air
5
classrooms
5
role portable
4
portable air
4
purifiers effective
4
ventilation
4
effective ventilation
4
ventilation improving
4

Similar Publications

Electrical Characterization of Indoor Air Quality in the Presence of Various Natural Air Purifiers.

ACS Omega

September 2025

Department of Electrical and Computer Engineering, North South University, Bashundhara, Plot # 15, Dhaka Division, Dhaka 1229, Bangladesh.

Air pollution is a critical threat to human health and the quality of life in large cities. In this work, we electrically characterized indoor air quality in Dhaka City with a microcontroller-based advanced sensing system in the presence of 60 air purifiers. We conducted LabVIEW-controlled, fully automated, and remotely operated experiments to precisely monitor, store, and analyze the air-purifying effects in the concentrations of air quality index (AQI) parametersPM2.

View Article and Find Full Text PDF

War-time changes in air pollution across Ukrainian cities were assessed through magnetic susceptibility and heavy metal contents in PM collected on air filters.

Environ Pollut

September 2025

Taras Shevchenko National University of Kyiv, 90 Vasylkivska str., Kyiv 03022, Ukraine; Institute of Geophysics, Polish Academy of Sciences, Ksiecia Janusza 64, 01-452 Warsaw, Poland. Electronic address:

This study examines changes in air pollution by magnetic iron compounds and heavy metals, as identified through magnetic susceptibility and Fe, Zn, Cu, Mn, Pb, Ni, and Cr content measurements on air filters collected monthly during the pre-war (PW-01.2016-12.2018) and war (W-08.

View Article and Find Full Text PDF

CFD Evaluation of Far-UVCand Air Cleaning Technologies in Classrooms without Mechanical Ventilation.

J Hazard Mater

September 2025

Architectural Engineering Department, Pennsylvania State University, University Park, PA, USA. Electronic address:

Far-UVC systems and air cleaners are effective strategies for controlling airborne pathogen transmission, particularly in densely occupied spaces with insufficient ventilation, such as school classrooms. This study evaluates the disinfection performance and ozone (O) formation of different far-UVC systems and air cleaners in a standard-sized classroom using computational fluid dynamics (CFD) simulation. Results show that ceiling-mounted far-UVC systems reduce airborne pathogen exposure by up to 30 % more than upper-room and wall-mounted configurations, based on intake fractions and room-average concentrations.

View Article and Find Full Text PDF

Optimization of beam quality for lumbar spine imaging with heavy metal filters: a phantom model study.

Radiat Prot Dosimetry

September 2025

Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University, 1-1-1 Chikushigaoka, Minami-ku, Fukuoka, 815-8510, Japan.

In radiological imaging, much research has been conducted on tube voltage and additional filters to reduce radiation exposure. In this study, the usefulness of heavy metal filters in lumbar spine imaging to maintain image quality and reduce radiation dose was investigated. A human-body phantom was irradiated with various combinations of tube voltages (70, 75, 80, 85, and 90 kV) and filters (Cu, Gd, Ho, Yb, W).

View Article and Find Full Text PDF

In this study, portable air filters ranging in size from small desktop units with ∼80 lpm (∼3 CFM) flow rates to large plug-in filters with ∼8500 lpm (∼300 CFM) flow rates were tested to evaluate their performance in reducing particulate matter (PM) and nitrogen oxide (NO) concentrations (as a sum of NO and NO, or individually) inside vehicle cabins. Aftermarket cabin air filters with various types of carbon trap features were tested to evaluate their performance in reducing NO concentrations inside vehicle cabins. The first goal was to determine the minimum size (in terms of flow rates) for a supplemental portable air purifier to aid the existing cabin air filter such that it enhances air quality without excessive energy consumption or space requirements.

View Article and Find Full Text PDF