Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A novel reusable ion imprinted nanocomposite magnetic bentonite(IIPNMB) was prepared for selective recovery of aqueous scandium. Based on the fact that oxyphosphorus functional groups in sodium tripolyphosphate have good affinity to Sc(III) and chitosan is rich in hydroxy and amino active sites, they were chosen to build ion imprinted layers. Mesoporous IIPNMB showed good adsorption performance. The pseudo second-order kinetic model and Langmuir model fit the experimental data. According to XPS features, the amino, hydroxyl, PO and PO bonds of the adsorbents had electrostatic interaction and complexation with Sc(III), leading to the good selectivity of IIPNMB for Sc(III). In addition, the material atomic structure was proposed based on the chemical structure of IIPNMB for DFT calculation of ion imprinting adsorption, which clearly proved that the adsorption process of Sc(III) was stable, and it gave another proof for the mechanism of the selective extraction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.10.161 | DOI Listing |