98%
921
2 minutes
20
The drying of a multi-component dispersion, such as water-based paint, ink and sunscreen to form a solid film, is a widespread process. Binary colloidal suspensions have proven capable of spontaneous layer formation through size segregation during drying. To design bespoke stratification patterns, a deeper understanding of how these emerge is crucial. Here, we visualize and quantify the spatiotemporally evolving concentration profiles in situ and with high resolution using confocal fluorescence microscopy of custom-designed binary dispersions in a well-defined geometry. Our results conclusively establish two distinct stratification routes, which give rise to three layered structures. A first thin layer develops directly underneath the evaporation front in which large particles are kinetically trapped. At later times, asymmetrical particle interactions lead to the formation of two subsequent layers enriched in small and large particles, respectively. The spatial extent and magnitude of demixing strongly depend on the initial volume fraction. We explain and reproduce the experimental concentration profiles using a theoretical model based on dynamic arrest and higher-order thermodynamic and hydrodynamic interactions. These insights unravel the key mechanisms underlying colloidal auto-stratification in multi-component suspensions, and allow preprogramming of stratification patterns in single-deposition formulations for future applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.10.103 | DOI Listing |
The morphological patterns of lung adenocarcinoma (LUAD) are recognized for their prognostic significance, with ongoing debate regarding the optimal grading strategy. This study aimed to develop a clinical-grade, fully quantitative, and automated tool for pattern classification/quantification (PATQUANT), to evaluate existing grading strategies, and determine the optimal grading system. PATQUANT was trained on a high-quality dataset, manually annotated by expert pathologists.
View Article and Find Full Text PDFCancer Manag Res
September 2025
The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
Background: Lung cancer brain metastasis (LCBM) accounts for 40-50% of intracranial malignancies, with emerging evidence of alternative metastatic pathways circumventing the blood-brain barrier. Existing prognostic models lack validation in Asian populations and molecular stratification. This multicenter study aimed to develop a clinical nomogram integrating clinicopathological and molecular determinants for personalized LCBM management.
View Article and Find Full Text PDFBMC Infect Dis
September 2025
Department of Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
Background: Serratia marcescens is an opportunistic pathogen increasingly associated with healthcare-associated infections and rising antimicrobial resistance. The emergence of multidrug-resistant (MDR) and carbapenem-resistant S. marcescens (CRSM) presents significant therapeutic challenges.
View Article and Find Full Text PDFClin Neurol Neurosurg
September 2025
Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Center for Translational Neuro, & Behavioral Sciences (C-TNBS), University of Duisburg Essen, Germany.
Objective: Accurate prediction of the initial severity of aneurysmal subarachnoid hemorrhage (aSAH) is important for effective management of unruptured intracranial aneurysms (IA). This study aims to investigate patient and IA characteristics as pre-rupture predictors of severe aSAH.
Methods: This retrospective analysis included all patients aged 18 years or older diagnosed with acute aSAH at our center between January 2003 and June 2016.
J Biomech
September 2025
Division of Vascular Surgery, Stanford University, Stanford, 94305, CA, USA.
The helical morphology of Type B aortic dissections (TBAD) represents a potentially important geometric biomarker that may influence dissection progression. While three-dimensional surface-based quantification methods provide accurate TBAD helicity assessment, their clinical adoption remains limited by significant processing time. We developed and validated a clinically practical centerline-based helicity quantification method using routine imaging software (TeraRecon) against an extensively validated surface-based method (SimVascular).
View Article and Find Full Text PDF