Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Oil/water separation by porous materials has received growing interest over the past years since the ever-increasing oily wastewater discharges seriously threaten our living environment. Purification of nano-sized and concentrated emulsions remains a big challenge because of the sharp flux decline by blocking the pores and fouling the surfaces of those porous materials. Herein, we propose a solar-driven evaporator possessing thin-film-composite architecture to deal with these two bottlenecks. Inspired by plant roots, our evaporator composes of a large-pore sponge wrapped by a thin hydrogel film, which is constructed by the contra-diffusion and cross-linking of alginate and calcium ions at the sponge surface. The dense superoleophobic hydrogel layer serves as a selective barrier that prevents oil emulsions but allows water permeation, while the inner sponge with large pores facilitates water transport within the evaporator, ensuring sufficient water supply for evaporation. By splitting the single evaporator into an array, the evaporator performs a high evaporation rate of ∼3.10 kg·m·h and oil removal efficiency above 99.9% for a variety of oil emulsions. Moreover, it displays a negligible decline in the evaporation rate when treating concentrated emulsions for 8 h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c16093 | DOI Listing |