Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at -80 °C to -20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636870PMC
http://dx.doi.org/10.7717/peerj.14176DOI Listing

Publication Analysis

Top Keywords

coral bleaching
12
bleaching restoration
12
collecting preserving
8
preserving archiving
8
specimens increase
8
restoration studies
8
downstream analyses
8
omics physiology
8
microscopy imaging
8
collection preservation
8

Similar Publications

Sea surface temperature of the Red Sea has increased by up to 0.45 °C per decade over the last 30 years, and coral bleaching events are becoming more frequent. A reef bleaching event was observed in October 2020, whereby some parts of the Red Sea experienced more than 12 °C-weeks.

View Article and Find Full Text PDF

Heat Stress Drives Rapid Viral and Antiviral Innate Immunity Activation in Hexacorallia.

Mol Ecol

September 2025

Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.

The class Hexacorallia, encompassing stony corals and sea anemones, plays a critical role in marine ecosystems. Coral bleaching, the disruption of the symbiosis between stony corals and zooxanthellate algae, is driven by seawater warming and further exacerbated by pathogenic microbes. However, how pathogens, especially viruses, contribute to accelerated bleaching remains poorly understood.

View Article and Find Full Text PDF

Coral reefs are threatened worldwide from unprecedented increases in ocean temperatures, resulting in corals gradually living closer to their maximum thermal threshold. With ocean temperatures expected to warm up to 3 °C by 2100, understanding the effects of chronic elevated baseline temperature is important in determining the thermal physiological limits of corals and developing realistic restoration strategies to ensure the future of coral reefs. Here, we tested the effects of 26 weeks (i.

View Article and Find Full Text PDF

The hydrocoral (fire coral) plays a critical role in reef structure and relies on a symbiotic relationship with Symbiodiniaceae algae. Environmental stressors derived from climate change, such as UV radiation and elevated temperatures, disrupt this symbiosis, leading to bleaching and threatening reef survival. To gain insight into the thermal stress response of this reef-building hydrocoral, this study investigates the proteomic response of to bleaching during the 2015-2016 El Niño event.

View Article and Find Full Text PDF

Seasonal Variation in In Hospite but Not Free-Living, Symbiodiniaceae Communities Around Hainan Island, China.

Microorganisms

August 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.

Coral reefs are increasingly threatened by global climate change, and mass bleaching and mortality events caused by elevated seawater temperature have led to coral loss worldwide. Hainan Island hosts extensive coral reef ecosystems in China, yet seasonal variation in Symbiodiniaceae communities within this region remains insufficiently understood. We aimed to investigate the temperature-driven adaptability regulation of the symbiotic Symbiodiniaceae community in reef-building corals, focusing on the environmental adaptive changes in its community structure in coral reefs between cold (23.

View Article and Find Full Text PDF