98%
921
2 minutes
20
Background: Many artificial intelligence (AI) studies have focused on development of AI models, novel techniques, and reporting guidelines. However, little is understood about clinicians' perspectives of AI applications in medical fields including ophthalmology, particularly in light of recent regulatory guidelines. The aim for this study was to evaluate the perspectives of ophthalmologists regarding AI in 4 major eye conditions: diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD) and cataract.
Methods: This was a multi-national survey of ophthalmologists between March 1st, 2020 to February 29th, 2021 disseminated the major global ophthalmology societies. The survey was designed based on microsystem, mesosystem and macrosystem questions, and the software as a medical device (SaMD) regulatory framework chaired by the Food and Drug Administration (FDA). Factors associated with AI adoption for ophthalmology analyzed with multivariable logistic regression random forest machine learning.
Results: One thousand one hundred seventy-six ophthalmologists from 70 countries participated with a response rate ranging from 78.8 to 85.8% per question. Ophthalmologists were more willing to use AI as clinical assistive tools (88.1%, = 890/1,010) especially those with over 20 years' experience (OR 3.70, 95% CI: 1.10-12.5, = 0.035), as compared to clinical decision support tools (78.8%, = 796/1,010) or diagnostic tools (64.5%, = 651). A majority of Ophthalmologists felt that AI is most relevant to DR (78.2%), followed by glaucoma (70.7%), AMD (66.8%), and cataract (51.4%) detection. Many participants were confident their roles will not be replaced (68.2%, = 632/927), and felt COVID-19 catalyzed willingness to adopt AI (80.9%, = 750/927). Common barriers to implementation include medical liability from errors (72.5%, = 672/927) whereas enablers include improving access (94.5%, = 876/927). Machine learning modeling predicted acceptance from participant demographics with moderate to high accuracy, and area under the receiver operating curves of 0.63-0.83.
Conclusion: Ophthalmologists are receptive to adopting AI as assistive tools for DR, glaucoma, and AMD. Furthermore, ML is a useful method that can be applied to evaluate predictive factors on clinical qualitative questionnaires. This study outlines actionable insights for future research and facilitation interventions to drive adoption and operationalization of AI tools for Ophthalmology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612721 | PMC |
http://dx.doi.org/10.3389/fmed.2022.875242 | DOI Listing |
EBioMedicine
September 2025
Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:
J Particip Med
September 2025
Participatory Health, 20 Grasmere Ave, Fairfield, CT, 06824, United States, 1 (212) 280-1600.
JMIR Res Protoc
September 2025
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
[This corrects the article DOI: .].
View Article and Find Full Text PDFJMIR Cancer
September 2025
iCARE Secure Data Environment & Digital Collaboration Space, NIHR Imperial Biomedical Research Centre, London, United Kingdom.
Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
School of Advertising, Marketing and Public Relations, Faculty of Business and Law, Queensland University of Technology, Brisbane, Australia.
Background: Labor shortages in health care pose significant challenges to sustaining high-quality care for people with intellectual disabilities. Social robots show promise in supporting both people with intellectual disabilities and their health care professionals; yet, few are fully developed and embedded in productive care environments. Implementation of such technologies is inherently complex, requiring careful examination of facilitators and barriers influencing sustained use.
View Article and Find Full Text PDF