Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding how multifactorial fluctuating environments affect species and communities remains one of the major challenges in ecology. The spatial configuration of the environment is known to generate complex patterns of correlation among multiple stressors. However, to what extent the spatial correlation between simultaneously fluctuating variables affects ecological assemblages in real-world conditions remains poorly understood. Here, we use field experiments and simulations to assess the influence of spatial correlation of two relevant climate variables - warming and sediment deposition following heavy precipitation - on the biomass and photosynthetic activity of rocky intertidal biofilm. First, we used a response-surface design experiment to establish the relation between biofilm, warming, and sediment deposition in the field. Second, we used the response surface to generate predictions of biofilm performance under different scenarios of warming and sediment correlation. Finally, we tested the predicted outcomes by manipulating the degree of correlation between the two climate variables in a second field experiment. Simulations stemming from the experimentally derived response surface showed how the degree and direction (positive or negative) of spatial correlation between warming and sediment deposition ultimately determined the nonlinear response of biofilm biomass (but not photosynthetic activity) to fluctuating levels of the two climate variables. Experimental results corroborated these predictions, probing the buffering effect of negative spatial correlation against extreme levels of warming and sediment deposition. Together, these results indicate that consideration of nonlinear response functions and local-scale patterns of correlation between climate drivers can improve our understanding and ability to predict ecological responses to multiple processes in heterogeneous environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608791PMC
http://dx.doi.org/10.1002/ece3.9418DOI Listing

Publication Analysis

Top Keywords

spatial correlation
20
warming sediment
20
sediment deposition
16
climate variables
12
multiple stressors
8
correlation
8
patterns correlation
8
biomass photosynthetic
8
photosynthetic activity
8
response surface
8

Similar Publications

Purpos: To investigate the spatial placements of the horizontal and vertical ciliary sulcus through ultrasound biomicroscopy (UBM) analysis.

Setting: EYE & ENT Hospital of Fudan University, Shanghai, China.

Design: Prospective observational clinical study.

View Article and Find Full Text PDF

The ESCRT machinery mediates membrane remodeling in fundamental cellular processes including cytokinesis, endosomal sorting, nuclear envelope reformation, and membrane repair. Membrane constriction and scission is driven by the filament-forming ESCRT-III complex and the AAA-ATPase VPS4. While ESCRT-III-driven membrane scission is generally established, the mechanisms governing the assembly and coordination of its twelve mammalian isoforms in cells remain poorly understood.

View Article and Find Full Text PDF

Intravoxel Incoherent Motion (IVIM) MRI is a contrast-agent-free microvascular imaging method finding increasing use in biomedicine. However, there is uncertainty in the ability of IVIM-MRI to quantify tissue microvasculature given MRI's limited spatial resolution (mm scale). Nine NRG mice were subcutaneously inoculated with human pancreatic cancer BxPC-3 cells transfected with DsRed, and MR-compatible plastic window chambers were surgically installed in the dorsal skinfold.

View Article and Find Full Text PDF

Marine ecosystems, particularly estuaries, are increasingly threatened by anthropogenic pressures. The Odiel Estuary has suffered severe contamination from acid mine drainage and industrial activities. Since 1986, mitigation efforts have been implemented, yet their long-term ecological effectiveness remains under-evaluated.

View Article and Find Full Text PDF

Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.

View Article and Find Full Text PDF