Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fibrosis is a progressive biological condition, leading to organ dysfunction in various clinical settings. Although fibroblasts and macrophages are known as key cellular players for fibrosis development, a comprehensive functional model that considers their interaction in the metabolic/immunologic context of fibrotic tissue has not been set up. Here we show, by transcriptome-based mathematical modeling in an in vitro system that represents macrophage-fibroblast interplay and reflects the functional effects of inflammation, hypoxia and the adaptive immune context, that irreversible fibrosis development is associated with specific combinations of metabolic and inflammatory cues. The in vitro signatures are in good alignment with transcriptomic profiles generated on laser captured glomeruli and cortical tubule-interstitial area, isolated from human transplanted kidneys with advanced stages of glomerulosclerosis and interstitial fibrosis/tubular atrophy, two clinically relevant conditions associated with organ failure in renal allografts. The model we describe here is validated on tissue based quantitative immune-phenotyping of biopsies from transplanted kidneys, demonstrating its feasibility. We conclude that the combination of in vitro and in silico modeling represents a powerful systems medicine approach to dissect fibrosis pathogenesis, applicable to specific pathological conditions, and develop coordinated targeted approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618579PMC
http://dx.doi.org/10.1038/s41467-022-34241-5DOI Listing

Publication Analysis

Top Keywords

fibrosis pathogenesis
8
macrophage-fibroblast interplay
8
fibrosis development
8
transplanted kidneys
8
understanding fibrosis
4
pathogenesis modeling
4
modeling macrophage-fibroblast
4
interplay immune-metabolic
4
immune-metabolic context
4
fibrosis
4

Similar Publications

[Research status of diagnosis, treatment and prognosis of primary Sjögren's syndrome-associated interstitial lung disease].

Zhonghua Jie He He Hu Xi Za Zhi

September 2025

National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, China-Japan

Interstitial lung disease (ILD) is a group of heterogeneous non-tumor and non-infectious lung diseases with basic lesions of alveolar unit inflammation and interstitial fibrosis. There are hundreds of kinds of ILD. The study of ILD subtypes in China found that the most common disease was idiopathic pulmonary fibrosis (IPF, 26.

View Article and Find Full Text PDF

Airway obstruction and gender affect arterial stiffness in children with cystic fibrosis.

Turk J Pediatr

September 2025

Department of Cardiorespiratory Physiotherapy and Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.

Background: Vascular changes are observed in children with cystic fibrosis (cwCF), and gender-specific differences may impact arterial stiffness. We aimed to compare arterial stiffness and clinical parameters based on gender in cwCF and to determine the factors affecting arterial stiffness in cwCF.

Methods: Fifty-eight cwCF were included.

View Article and Find Full Text PDF

Neutrophils play a complex role in the pathogenesis of chronic liver disease and have been linked to both liver damage and injury resolution. Recent reports propose that neutrophils drive liver injury and fibrosis through the formation of neutrophil extracellular traps (NETs). This study tests the hypothesis that the enzyme peptidyl arginine deiminase-4 (PAD4) drives NET formation and liver fibrosis in experimental chronic liver injury.

View Article and Find Full Text PDF

Background: IgA nephropathy is a disease with a highly variable natural history, for which there is an increasing understanding of the role of complement activation in its pathogenesis and progression. We aimed to assess the clinical and prognostic implications of C4d staining in the kidney biopsy of IgA nephropathy patients.

Methods: This was a retrospective observational study wherein the medical records of IgA nephropathy patients were reviewed and baseline characteristics, kidney biopsy findings, treatment response and follow-up data were noted.

View Article and Find Full Text PDF

Oxidative stress and ferroptosis in diabetic cardiomyopathy: mechanistic interplay and therapeutic implications.

Apoptosis

September 2025

The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou, 646000, China.

Diabetic cardiomyopathy (DCM) is a severe cardiovascular complication of diabetes mellitus, characterized by pathological changes such as cardiomyocyte hypertrophy, necrosis, and myocardial fibrosis, which can ultimately lead to heart failure. However, its underlying mechanisms remain incompletely understood, limiting the development of effective therapeutic approaches. In recent years, the critical roles of oxidative stress and ferroptosis in the pathogenesis of DCM have attracted increasing attention.

View Article and Find Full Text PDF