98%
921
2 minutes
20
Background: , a genus of the Solanaceae family, has historically been utilized in many different parts of the world as an anti-inflammatory for treating skin infections, wounds, and bodily aches and pains. The current study aimed to investigate the potential benefits of a methanolic extract of in the management of diabetes and underlying complications in alloxanized-induced diabetic rats.
Materials And Methods: Animals were divided into nine groups ( = 6). Four groups received different standard oral hypoglycemic agents; three groups received 100, 200, and 400 mg/kg of leaf extract for six consecutive weeks, and the remaining two were normal and disease control groups. All groups received alloxan (150 mg/kg) except for the normal control. Only those animals whose glucose levels were raised to 200 mg/dl were selected for the study. After a 6-week dosage period, various biochemical parameters, as well as HbA1c, antioxidant profile, oral glucose tolerance test (OGTT), insulin sensitivity, histopathology, and insulin resistance, were measured and compared with the untreated diabetic group.
Results: leaf extract at a dose of 400 mg/kg showed potent antidiabetic activity by reducing blood glucose levels ( < 0.001) after 6 weeks of treatment. OGTT data showed that exhibited significant ( < 0.001) glucose tolerance by significantly reducing blood glucose levels in just 2 h post-treatment. Other tests showed that plant extract significantly increased ( < 0.001) insulin sensitivity and decreased ( < 0.001) insulin resistance. The biochemical profile showed reduced triglyceride and cholesterol, while the antioxidant profile showed restoration of antioxidant enzymes in the pancreas, kidney, and liver tissues of treated rats.
Conclusion: The present study indicated that crude extracts of increase insulin sensitivity and reduce hyperlipidemia in diabetic rats, which rationalizes the traditional medicinal use of this plant as an antidiabetic agent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592987 | PMC |
http://dx.doi.org/10.3389/fnut.2022.1005341 | DOI Listing |
Chem Biodivers
September 2025
School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.
20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.
View Article and Find Full Text PDFChem Biodivers
September 2025
Chongqing Key Laboratory of Development and Utilization of DaoDi Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing, P. R. China.
Three new steroidal saponins, kingianoside L-N (1-3), whose structures were elucidated through comprehensive spectroscopic analysis, and 15 known compounds (4-18) were isolated from Polygonatum kingianum var. grandifolium, a source of the traditional antihyperglycemic medicine Polygonati rhizome. The effects of compounds 1-13 on α-glucosidase activity were evaluated in vitro.
View Article and Find Full Text PDFPLoS Genet
September 2025
Department of Biology/Chemistry, Division of Genetics, University of Osnabrück, Barbarastrasse, Osnabrück, Germany.
The small GTPase Rho5 has been shown to be involved in regulating the Baker's yeast response to stress on the cell wall, high medium osmolarity, and reactive oxygen species. These stress conditions trigger a rapid translocation of Rho5 and its dimeric GDP/GTP exchange factor (GEF) to the mitochondrial surface, which was also observed upon glucose starvation. We here show that rho5 deletions affect carbohydrate metabolism both at the transcriptomic and the proteomic level, in addition to cell wall and mitochondrial composition.
View Article and Find Full Text PDFIntroduction: Genetic analysis is essential for diagnosing, treating, and predicting complications in neonatal diabetes mellitus (NDM) but is unavailable in some regions. Sulfonylureas are effective for NDM caused by KCNJ11 or ABCC8 mutations, which are among the most common genetic causes, therefore they are often given before genetic testing. Unfortunately, in certain ethnicities, this mutation rarely occurs.
View Article and Find Full Text PDFXenobiotica
September 2025
Department of Pharmacy, Binhai County People's Hospital, Yancheng 224500, China.
To study the effects of calycosin on palmitic acid-induced HepG2 cells, as well as the potential mechanisms of action. Potential targets of calycosin for the alleviation of insulin resistance were predicted by network pharmacology. Glucose concentration in the culture medium was determined by the GOD-POD method.
View Article and Find Full Text PDF