Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in different tissues and organs causing, among other symptoms, severe ocular manifestations. Cysteamine eye drops are prepared in hospital pharmacy departments to facilitate access to treatment, for which vehicles that provide adequate biopermanence, as well as adaptable containers that maintain its stability, are required. Difficulties related to cysteamine preparation, as well as its tendency to oxidize to cystamine, show the importance of conducting rigorous galenic characterization studies. This work aims to develop and characterize an ophthalmic compounded formulation of cysteamine prepared with hyaluronic acid and packaged in innovative single-dose systems. For this task, the effect of different storage temperatures and the presence/absence of nitrogen on the physicochemical stability of the formulation and its packaging was studied in a scaled manner, until reaching the optimal storage conditions. The results showed that 0.55% cysteamine, prepared with hyaluronic acid and packaged in single-dose containers, is stable for 30 days when stored at -20 °C. In addition, opening vials every 4 h at room temperature after 30 days of freezing maintains the stability of the cysteamine formulation for up to 16 h. Moreover, ocular biopermanence studies were conducted using molecular imaging, concluding that the biopermanence offered by the vehicle is not affected by the freezing process, where a half-life of 31.11 min for a hyaluronic acid formulation stored for 30 days at -20 °C was obtained, compared with 14.63 min for 0.9% sodium chloride eye drops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607622PMC
http://dx.doi.org/10.3390/pharmaceutics14102194DOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
16
eye drops
12
acid packaged
12
cysteamine eye
8
packaged innovative
8
innovative single-dose
8
single-dose systems
8
ocular biopermanence
8
cysteamine prepared
8
prepared hyaluronic
8

Similar Publications

Click chemistry-driven adhesive hydrogel for efficient healing of infected wounds through multistage comprehensive management.

J Mater Chem B

September 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Infected wound treatment remains a critical challenge in clinical medicine. Although existing treatments, like local debridement, antimicrobial agents, and growth factor therapies, have demonstrated certain therapeutic effects, they primarily target only specific stages of wound healing. Moreover, the escalating issue of antibiotic resistance limits their efficacy.

View Article and Find Full Text PDF

Aims: To compare the early wound-healing responses to crosslinked hyaluronic acid enriched with two proline-rich peptides (P2, P6) against unmodified hyaluronic acid and the enamel-matrix derivative (EMD) in a porcine gingival-detachment model.

Methods: In six pigs, defects around premolars were treated with HA, HA + P2, HA + P6 or EMD. After 6 days, the sites were harvested and evaluated using histology, immunohistochemistry, multiplex cytokine assay and untargeted proteomics of the gels, which were examined, informing an integrated multiomics approach analysis.

View Article and Find Full Text PDF

Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.

View Article and Find Full Text PDF

Modified hyaluronic acid (HA) biomaterials have received considerable attention in recent years, especially in developing innovative therapeutic strategies for targeted disease interventions. HA serves to shield therapeutics from the physiological environment, while enabling safe delivery and promoting uptake into specific cells. As a hydrophilic chain polymer, HA is readily chemically modified into functional biomaterials for drug delivery and cancer immunotherapy.

View Article and Find Full Text PDF

Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developed GrooveNeuroTube is composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.

View Article and Find Full Text PDF