Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The gene family plays an important role in plant growth and development as regulators involved in plant hormone signaling and metabolism. However, the Juglandaceae gene family remains to be studied. Here, we identified 15, 15, 19, and 20 genes in , , , and , respectively. The phylogeny shows that the Juglandaceae family GRF is divided into two subfamilies, the ε-group and the non-ε-group, and that selection pressure analysis did not detect amino acid loci subject to positive selection pressure. In addition, we found that the duplications of the Juglandaceae family genes were all segmental duplication events, and a total of 79 orthologous gene pairs and one paralogous homologous gene pair were identified in four Juglandaceae families. The ratios between these homologous gene pairs were further analyzed, and the values were all less than 1, indicating that purifying selection plays an important role in the evolution of the Juglandaceae family genes. The codon bias of genes in the GRF family of Juglandaceae species is weak, and is affected by both natural selection pressure and base mutation, and translation selection plays a dominant role in the mutation pressure in codon usage. Finally, expression analysis showed that genes play important roles in pecan embryo development and walnut male and female flower bud development, but with different expression patterns. In conclusion, this study will serve as a rich genetic resource for exploring the molecular mechanisms of flower bud differentiation and embryo development in Juglandaceae. In addition, this is the first study to report the gene family in the Juglandaceae family; therefore, our study will provide guidance for future comparative and functional genomic studies of the gene family in the Juglandaceae specie.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604165PMC
http://dx.doi.org/10.3390/ijms232012663DOI Listing

Publication Analysis

Top Keywords

gene family
20
juglandaceae family
16
selection pressure
12
family juglandaceae
12
family
10
juglandaceae
10
gene
8
juglandaceae species
8
plays role
8
family genes
8

Similar Publications

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

Whole genome sequence analysis of low-density lipoprotein cholesterol across 246 K individuals.

Genome Biol

September 2025

Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.

Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

Personalised genomic strategies improve diagnostic yield in inherited retinal dystrophies: a stepwise, patient-centred approach.

Eye (Lond)

September 2025

Genetics Laboratory, Metropolitan South Clinical Laboratory, Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.

Background: Inherited retinal dystrophies (IRDs) are a genetically heterogeneous group of conditions, with approximately 40% of cases remaining unresolved after initial genetic testing. This study aimed to assess the impact of a personalised genomic approach integrating whole-exome sequencing (WES) reanalysis, whole-genome sequencing (WGS), customised gene panels and functional assays to improve diagnostic yield in unresolved cases.

Subjects/methods: We retrospectively reviewed a cohort of 597 individuals with IRDs, including 525 probands and 72 affected relatives.

View Article and Find Full Text PDF