Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ultrasonic-assisted aqueous two-phase extraction (UAATPE) of flavonoid glycosides from Cav. flower (MACF) was developed using ethanol/ammonia sulfate systems, followed by the ultrasonic-assisted acid hydrolysis (UAAH) of the top extract with HCl solution. The optimization of UAATPE and UAAH processes was accomplished by single-factor experiments and response surface methodology. As a result, the flavonoid glycosides enriched in the top phase could achieve a maximum yield of 35.9 ± 1.1 mg/g by UAATPE and were completely hydrolyzed by UAAH deglycosylation. The flavonoid glycosides and their hydrolyzates were separated and characterized by high-performance liquid chromatography and ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Ultrasonic enhancement of the extraction and hydrolysis was explored by comparative study. Furthermore, the in vitro activity of the flavonoid glycosides and the aglycones were comprehensively evaluated by antioxidant activity assays, including ferric-reducing antioxidant power and scavenging DPPH, hydroxyl, and superoxide radicals. All of the IC values suggest that the antioxidant activity of flavonoid aglycones was stronger than that of their glucosides and even vitamin C, revealing that the deglycosylated flavonoids from MACF were the more powerful antioxidants. This study provided an effective and eco-friendly strategy for the extraction, separation, and purification of flavonoids from MACF, as well as for the development of the potential flavonoid antioxidants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598477PMC
http://dx.doi.org/10.3390/antiox11102039DOI Listing

Publication Analysis

Top Keywords

flavonoid glycosides
16
antioxidant activity
12
ultrasonic enhancement
8
aqueous two-phase
8
two-phase extraction
8
acid hydrolysis
8
cav flower
8
activity flavonoid
8
flavonoids macf
8
flavonoid
6

Similar Publications

Cancer treatment faces challenges like nonselective toxicity and drug resistance, prompting the need for innovative therapies. This study aimed to develop liposomal formulations for co-delivery of empagliflozin and rutin, evaluating their anticancer and antioxidant efficacy. PEGylated empagliflozin-loaded nanoliposomes (Empa-NLs) and empagliflozin-rutin co-loaded nanoliposomes (Empa-Rut NLs) were synthesized using the thin-film hydration technique.

View Article and Find Full Text PDF

Insights into the improvement of bioactive phytochemicals, antioxidant activities and flavor profiles in soy whey fermented by various native lactic acid bacteria.

3 Biotech

October 2025

Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 China.

Unlabelled: Soy whey, a tofu production byproduct rich in nutrients, is typically discarded. This study investigated five natural lactic acid bacteria (LAB) strains isolated from spontaneously fermented soy whey (FSW) for their fermentation performance in soy whey medium. The growth characteristics, total phenols and flavonoids compounds, antioxidant activities, and aroma profiles were evaluated.

View Article and Find Full Text PDF

Environmental changes due to global warming and human activities have negatively impacted malaria vector control in Hadiya zone, Ethiopia. Plants contain anthraquinoes. Flavonoids, glycosides, phenol, saponin, steroids, tannin, and terpenes that are target specific, rapidly biodegradable, ecofriendly, and less toxic to human health.

View Article and Find Full Text PDF

Introduction: The white water lily (Nymphaea alba) is a traditional medicinal plant recognized for its diverse array of bioactive properties. However, its potential in wound healing remains largely unexplored. This study aimed to evaluate the phytochemical profile, cytotoxicity, and wound healing efficacy of Nymphaea alba flower extract (NAFE) using both in vitro and in vivo models, as well as computational network analysis.

View Article and Find Full Text PDF

Foliar application of selenium nanoparticles enhance quality and mitigate negative plant-soil feedback in Panax notoginseng by modulating plant-microbiota interactions.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France

Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.

View Article and Find Full Text PDF