Dimethyl Fumarate Triggers the Antioxidant Defense System in Human Retinal Endothelial Cells through Nrf2 Activation.

Antioxidants (Basel)

Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy.

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dimethyl fumarate (DMF) is a well-known activator of Nrf2 (NF-E2-related factor 2), used in the treatment of psoriasis and multiple sclerosis. The mechanism of action consists in the modification of the cysteine residues on the Nrf2-inhibitor Keap1, thus leading to the dissociation of these two proteins and the consequent activation of Nrf2. Considering the paucity of evidence of DMF effects in the context of retinal endothelium, this study investigated the role of DMF in human retinal endothelial cells (HREC). Here, we show for the first time in HREC that DMF activates the Nrf2 pathway, thus leading to an increase in HO-1 protein levels and a decrease in intracellular ROS levels. Furthermore, this molecule also shows beneficial properties in a model of hyperglucose stress, exerting cytoprotective prosurvival effects. The overall collected results suggest that DMF-mediated activation of the Nrf2 pathway may also be a promising strategy in ocular diseases characterized by oxidative stress. This study opens a new perspective on DMF and suggests its potential repositioning in a broader therapeutical context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598343PMC
http://dx.doi.org/10.3390/antiox11101924DOI Listing

Publication Analysis

Top Keywords

dimethyl fumarate
8
human retinal
8
retinal endothelial
8
endothelial cells
8
activation nrf2
8
nrf2 pathway
8
nrf2
5
dmf
5
fumarate triggers
4
triggers antioxidant
4

Similar Publications

The NRF2/KEAP1 signaling pathway regulates the gene expression of numerous cytoprotective and detoxifying enzymes and is therefore essential for maintaining cellular redox homeostasis. Despite the increasing knowledge of NRF2 signaling complexity, dimethyl fumarate remains the sole NRF2-targeting therapy in clinical practice, used for multiple sclerosis. Ongoing research exploring the role of NRF2 in cancer, neurodegeneration, diabetes, and cardiovascular, renal, and liver diseases holds significant promise for future therapeutic innovation.

View Article and Find Full Text PDF

Dimethyl fumarate mitigates osteoarthritis progression through Nrf2 activation-mediated suppression of oxidative stress and subchondral osteoclastogenesis.

Int Immunopharmacol

September 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China. Electronic address:

Osteoarthritis (OA) is a degenerative joint disease associated with imbalanced subchondral bone remodeling, and there is currently no curative treatment available. In OA, excessive osteoclast activity leads to bone loss and inflammatory responses. Dimethyl fumarate (DMF), an Nrf2 activator already used in treating psoriasis and multiple sclerosis, may alleviate OA by suppressing oxidative stress and osteoclastogenesis.

View Article and Find Full Text PDF

Target trial emulation to replicate randomised clinical trials using registry data in multiple sclerosis.

J Neurol Neurosurg Psychiatry

September 2025

Hospices Civils de Lyon, Service de Neurologie, sclérose en plaques, pathologies de la myéline et neuroinflammation, Bron, France.

Unlabelled: BackgroundTarget trial emulation (TTE) offers a formal framework for causal inference using observational data, but its validity must be evaluated in each research domain by replicating randomised clinical trials (RCTs). We aimed to replicate eight RCTs evaluating the efficacy of disease-modifying therapies (DMTs) in multiple sclerosis (MS) using French registry data.

Methods: This multicentre, retrospective, observational study was conducted using data extracted in December 2023 from the (OFSEP) database.

View Article and Find Full Text PDF

Dimethyl fumarate is an inhibitor of pathological angiogenesis.

Cell Signal

September 2025

School of Optometry and Vision Science, University of New South Wales, Kensington, NSW 2052, Australia. Electronic address:

Vascular endothelial growth factor (VEGF), a pro-angiogenic molecule, supports blood vessel growth during wound healing but also drives pathological neovascularization in blinding eye diseases such as neovascular age-related macular degeneration (nAMD). Dimethyl fumarate (DMFu), an FDA-approved drug for multiple sclerosis, has previously shown promising anti-inflammatory properties in retinal pigment epithelium, a crucial structure disrupted by nAMD. Here, we extend the multi-phenotypic therapeutic potential of DMFu by discerning the anti-angiogenic capabilities of DMFu in choroidal and retinal endothelial cells.

View Article and Find Full Text PDF

Background: Radiologically Isolated Syndrome (RIS) is defined as incidentally found MRI abnormalities that are radiographically indistinguishable from multiple sclerosis (MS) and is considered a presymptomatic disease state of MS. Age <37 years, infratentorial or spinal cord lesions, gadolinium-enhancing lesions on index imaging, and positive cerebrospinal fluid oligoclonal bands have been identified as risk factors for conversion to MS. There are no existing guidelines regarding the role of disease-modifying therapy (DMT) in RIS patients.

View Article and Find Full Text PDF