Smartphone Applications for the General Pediatric Provider: A Comprehensive Review.

Clin Pediatr (Phila)

Division of Pediatric Emergency Medicine, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1177/00099228221132021DOI Listing

Publication Analysis

Top Keywords

smartphone applications
4
applications general
4
general pediatric
4
pediatric provider
4
provider comprehensive
4
comprehensive review
4
smartphone
1
general
1
pediatric
1
provider
1

Similar Publications

Biogenic amines (BAs) are organic nitrogen compounds formed through microbial decarboxylation of amino acids during food spoilage and biological metabolism. Therefore, the development of rapid, selective, and cost-effective detection strategies for BAs is significant for ensuring food safety and quality. In this study, a new dicyanoisophorone-based fluorescent probe (IPC) was developed, capable of fluorescence detection of aliphatic primary amines (e.

View Article and Find Full Text PDF

Background: Mobile health (mHealth) interventions can be effective for people living with HIV, who are sensitive to privacy breach risks. Understanding the perceived experiences of intervention participants can provide comprehensive insights into potential users and predict intervention effectiveness. Thus, it is necessary to plan engagement measurement and consider ways to enhance engagement during the app development phase.

View Article and Find Full Text PDF

Smartphone applications (apps) represent promising tools to overcome common barriers to treatment in individuals within the Eating Disorders (EDs) spectrum, thanks to their constant availability and cost-effectiveness. In this context, Cruz et al. (2025) conducted the first meta-analysis of randomized controlled trials (RCTs) evaluating the efficacy of app-based interventions for EDs.

View Article and Find Full Text PDF

A nanozyme-mediated cascade reaction system for fluorometric and colorimetric dual-mode detection of sarcosine (SA) was developed. The nanozymes (Zn-Glu@Hemin) were synthesized via a rapid self-assembly within 10 min at room temperature. Importantly, the Zn-Glu@Hemin exhibited strong peroxidase (POD)-mimicking activity, catalyzing the generation of hydroxyl radical (·OH) and superoxide anion (O) from hydrogen peroxide (HO), enhancing the fluorescence reaction of o-phenylenediamine (OPD) and the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine (TMB).

View Article and Find Full Text PDF

As the most dangerous mycotoxin, aflatoxin B1 (AFB1) has caused some food safety issues to be concerned. In this study, a simultaneous detection and degradation method towards AFB1 was established. Covalent-organic frameworks (COFs) were firstly synthesized and directly in situ deposited on the stainless-steel mesh, which would trigger the free-radical polymerization of acrylamide to form a hydrogel coating.

View Article and Find Full Text PDF