98%
921
2 minutes
20
The urease enzyme is commonly used in microbially induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) to heal and strengthen soil. Improving our understanding of the adsorption of the urease enzyme with various soil surfaces can lead to advancements in the MICP and EICP engineering methods as well as other areas of soil science. In this work, we use density functional theory (DFT) to investigate the urease enzyme's binding ability with four common arid soil components: quartz, corundum, albite, and hematite. As the urease enzyme cannot directly be simulated with DFT due to its size, the amino acids comprising at least 5% of the urease enzyme were simulated instead. An adsorption model incorporating the Gibbs free energy was used to determine the existence of amino acid-mineral binding modes. It was found that the nine simulated amino acids bind preferentially to the different soil components. Alanine favors corundum, glycine and threonine favor hematite, and aspartic acid favors albite. It was found that, under the standard environmental conditions considered here, amino acid binding to quartz is unfavorable. In the polymeric form where the side chains would dominate the binding interactions, hematite favors aspartic acid through its R-OH group and corundum favors glutamic acid through its R-Ket group. Overall, our model predicts that the urease enzyme produced by can bind to various oxides found in arid soil through its alanine, glycine, aspartic/glutamic acid, or threonine residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c01854 | DOI Listing |
Folia Microbiol (Praha)
September 2025
Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.
View Article and Find Full Text PDFWorld J Gastroenterol
August 2025
Guangxi Zhuang Autonomous Region Engineering Research Center of Clinical Prevention and Control Technology and Leading Drug for Microorganisms with Drug Resistance in Border Ethnic Areas, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China.
Background: (), a globally prevalent pathogen, is exhibiting increasing rates of antimicrobial resistance. However, clinical implementation of pre-treatment susceptibility testing remains limited due to the organism's fastidious growth requirements and prolonged culture time.
Aim: To propose a novel detection method utilizing antibiotic-supplemented media to inhibit susceptible strains, while resistant isolates were identified through urease-mediated hydrolysis of urea, inducing a phenol red color change for visual confirmation.
Antonie Van Leeuwenhoek
September 2025
Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India.
Plant growth-promoting rhizobacteria (PGPR) are known to enhance the productivity, development, yield, and soil health of both medicinal and vegetable crops. The present investigation evaluated the influence of PGPR on the growth attributes and physiological parameters of ginger, alongside soil quality, under field conditions. Field trials were carried out over three consecutive years (2020 to 2022), with ginger being planted each March.
View Article and Find Full Text PDFPLoS One
August 2025
Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, Hubei, P.R.China.
Background: Composting is a transformation and biodegradation process that converts organic biomass into valuable products while also removing antimicrobial resistance genes (ARGs). Promoting lignocellulose biodegradation is essential for enhancing composting efficiency and improving the quality of compost derived from agricultural organic waste. This study aims to explore the effects of cellulase and xylanase on the composting process of cow manure, with a focus on their impact on key physicochemical properties, microbial communities, and antibiotic resistance genes (ARGs).
View Article and Find Full Text PDFBMC Plant Biol
August 2025
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
Aiming to evaluate the sustainability and ecological viability of the rice-wheat system, field experiment was conducted at experimental farms of IIT Kharagpur, West Bengal, India in 2022-24 to assess how Conservation Agriculture (CA) based practices influence soil biochemical changes throughout the growth stages of rice and wheat. Under this experiment, the impact of varying tillage treatments (conventional tillage vs. zero tillage) and residue management practices (incorporated vs.
View Article and Find Full Text PDF