Silver nano-reporter enables simple and ultrasensitive profiling of microRNAs on a nanoflower-like microelectrode array on glass.

J Nanobiotechnology

The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, School of Biomedical Engineering, Intensive Care Unit, The Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping Distric

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MicroRNAs (miRNAs) are small non-coding RNAs with ~ 22 nucleotides, playing important roles in the post-transcriptional regulation of gene expression. The expression profiles of many miRNAs are closely related to the occurrence and progression of cancer and can be used as biomarkers for cancer diagnosis and prognosis. However, their intrinsic properties, such as short length, low abundance and high sequence homology, represent great challenges in miRNA detection of clinical samples. To overcome these challenges, we developed a simple, ultrasensitive detection platform of electrochemical miRNAs chip (e-miRchip) with a novel signal amplification strategy using silver nanoparticle reporters (AgNRs) for multiplexed, direct, electronic profiling of miRNAs. A two-step hybridization strategy was used to detect miRNAs, where the target miRNA hybridizes with a stem-loop probe to unlock the probe first, and the opened stem-loop can further hybridize with AgNRs for signaling amplification. To enhance the detection sensitivity, the gold nanoflower electrodes (GNEs) were constructed in the microaperture arrays of the e-miRchips by electroplating. With the optimal size of the GNEs, the e-miRchip showed excellent performance for miR-21 detection with a detection limit of 0.56 fM and a linear range extended from 1 fM to 10 pM. The e-miRchip also exhibited good specificity in differentiating the 3-base mismatched sequences of the target miRNA. In addition, the e-miRchip was able to directly detect miR-21 expression in the total RNA extracts or cell lysates collected from lung cancer cells and normal cells. This work demonstrated the developed e-miRchip as an efficient and promising miniaturized point-of-care diagnostic device for the early diagnosis and prognosis of cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590124PMC
http://dx.doi.org/10.1186/s12951-022-01664-7DOI Listing

Publication Analysis

Top Keywords

simple ultrasensitive
8
diagnosis prognosis
8
target mirna
8
mirnas
5
detection
5
e-mirchip
5
silver nano-reporter
4
nano-reporter enables
4
enables simple
4
ultrasensitive profiling
4

Similar Publications

Flexible, Transparent, and Microfluidic-Compatible Wafer-Scale Metamaterial Sheets for Dual SEF and SERS Sensing.

ACS Appl Mater Interfaces

September 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.

Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.

View Article and Find Full Text PDF

An ultrasensitive electrode modified with a molecularly imprinted PEDOT-TiO nanocomposite for voltammetric atrazine detection in environmental samples.

Talanta

August 2025

Department of Chemistry, Faculty of Natural and Exact Sciences, Universidad de Oriente, Av. Patricio Lumumba, Santiago de Cuba, 90100, Cuba.

Molecularly imprinted polymers (MIPs) have been studied to be used as a platform for electrochemical sensing devices, with special regard to the determination of pesticides. Due to MIP applicability, in the present research, we develop a glassy carbon electrode (GCE) modified with a molecularly imprinted nanocomposite based on the doping of poly(3,4-ethylenedioxythiophene) (PEDOT) with chitosan (Chit) and TiO nanoparticles for sensing atrazine in environmental samples. The construction of the MIP nanocomposite was divided into four parts, which include the chitosan-TiO layer formation by simple drop-casting on the GCE, the doping and electropolymerization of the Chit+TiO+PEDOT layer, cavity formation, and elution.

View Article and Find Full Text PDF

The development of non-toxic, cost-effective and high fluorescent sensing materials has earned significant interest in the last decade. In this work, a simple synthesis technique of mesoporous hydrogen-bonded organic frameworks (HOFs) suitable for the ultrasensitive detection of a commonly used antibiotic, enrofloxacin (ENR), has been reported. The fluorescence of the HOF is completely quenched after the formation of a HOF-Cu complex as a turn off sensor which undergoes a turn-on mechanism in the presence of ENR.

View Article and Find Full Text PDF

Argonaute-triggered and enhancement-by-mixing nano-SERS-transduced triple cascade amplification strategy: Transforming ultrasensitive molecular detection of foodborne pathogenic bacteria.

J Hazard Mater

August 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Coo

The emergence of diseases attributable to foodborne pathogens poses a significant threat to human health. Pyrococcus furiosus Argonaute (PfAgo), a novel member of programmable nucleases, is repurposed for molecular detection owing to its programmable and sequence-specific nucleic acid cleaving capabilities. In this work, a triple cascade amplification strategy termed as PASS was developed for pathogenic bacteria biosensing.

View Article and Find Full Text PDF

Introduction: The rapid and accurate identification of (MTB) is essential for effective tuberculosis (TB) control. However, conventional diagnostic methods for MTB suffer from limitations such as low sensitivity, poor specificity, high cost, reliance on specialized instruments, and complex, time-consuming procedures. To address these challenges, there is an urgent need for a simple, rapid, and highly sensitive detection method that can be deployed in point-of-care settings.

View Article and Find Full Text PDF