A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Accuracy of cone-beam computed tomography, digital mammography and digital breast tomosynthesis for microcalcifications and margins to microcalcifications in breast specimens. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate determination of resection margins in breast specimens is important as complete removal of malignancy is a prerequisite for patients' outcome. Mammography (DM) as 2D-technique provides only limited value in margin assessment. Therefore, we investigated whether cone-beam computed tomography (CBCT) or digital breast tomosynthesis (DBT) has incremental value in assessing margins to microcalcifications. Three independent readers investigated breast specimens for presence of microcalcifications and the smallest distance to margins. Histopathology served as gold standard. Microcalcifications were detected in 15 out of 21 included specimens (71%). Pooled sensitivity for DM, DBT and CBCT for microcalcifications compared to preoperative DM was 0.98 (CI 0.94-0.99), 0.83 (CI 0.73-0.94) and 0.94 (CI 0.87-0.99), pooled specificity was 0.99 (CI 0.99-0.99), 0.73 (CI 0.51-0.96) and 0.60 (CI 0.35-0.85). Mean measurement error for margin determination for DM, DBT and CBCT was 10 mm, 14 mm and 6 mm (p = 0.002) with significant difference between CBCT and the other devices (p < 0.03). Mean reading time required by the readers to analyze DM, DBT and CBCT, was 36, 43 and 54 s (p < 0.001). Although DM allows reliable detection of microcalcifications, measurement of resection margin was significantly more accurate with CBCT. Thus, a combination of methods or improved CBCT might provide a more accurate determination of disease-free margins in breast specimens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587219PMC
http://dx.doi.org/10.1038/s41598-022-21616-3DOI Listing

Publication Analysis

Top Keywords

breast specimens
12
cone-beam computed
8
computed tomography
8
digital breast
8
breast tomosynthesis
8
margins microcalcifications
8
dbt cbct
8
microcalcifications
6
breast
5
accuracy cone-beam
4

Similar Publications