98%
921
2 minutes
20
Phosphoserine (pSer) sites are primarily located within disordered protein regions, making it difficult to experimentally ascertain their effects on protein structure and function. Therefore, the production of N- (and C)-labeled proteins with site-specifically encoded pSer for NMR studies is essential to uncover molecular mechanisms of protein regulation by phosphorylation. While genetic code expansion technologies for the translational installation of pSer in Escherichia coli are well established and offer a powerful strategy to produce site-specifically phosphorylated proteins, methodologies to adapt them to minimal or isotope-enriched media have not been described. This shortcoming exists because pSer genetic code expansion expression hosts require the genomic ΔserB mutation, which increases pSer bioavailability but also imposes serine auxotrophy, preventing growth in minimal media used for isotopic labeling of recombinant proteins. Here, by testing different media supplements, we restored normal BL21(DE3) ΔserB growth in labeling media but subsequently observed an increase of phosphatase activity and mis-incorporation not typically seen in standard rich media. After rounds of optimization and adaption of a high-density culture protocol, we were able to obtain ≥10 mg/L homogenously labeled, phosphorylated superfolder GFP. To demonstrate the utility of this method, we also produced the intrinsically disordered serine/arginine-rich region of the SARS-CoV-2 Nucleocapsid protein labeled with N and pSer at the key site S188 and observed the resulting peak shift due to phosphorylation by 2D and 3D heteronuclear single quantum correlation analyses. We propose this cost-effective methodology will pave the way for more routine access to pSer-enriched proteins for 2D and 3D NMR analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678770 | PMC |
http://dx.doi.org/10.1016/j.jbc.2022.102613 | DOI Listing |
Microb Genom
September 2025
International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK.
High rates of mortality of the common cockle, , have occurred in the Wash Estuary, UK, since 2008. A previous study linked the mortalities to a novel genotype of , with a strong correlation between cockle moribundity and the presence of . Here, we characterize a novel iridovirus, identified by chance during metagenomic sequencing of a gradient purification of cells, with the presence also correlated to cockle moribundity.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.
Genetic code expansion (GCE) technology has primarily been devoted to the introduction of noncanonical amino acids (ncAAs) into ribosomally synthesized proteins or peptides. Its potential for modifying nonribosomal natural products remains unexplored. In this study, we introduce a novel strategy that integrates GCE with the directed evolution of cyclodipeptide synthase (CDPS) to engineer a new class of CDPSs capable of biosynthesizing cyclodipeptides containing ncAAs.
View Article and Find Full Text PDFCNS Drugs
September 2025
Global Health Neurology Lab, Sydney, NSW, 2150, Australia.
Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.
View Article and Find Full Text PDFBioinform Adv
August 2025
IBM Research, Yorktown Heights, NY, 10598, United States.
Motivation: Due to the intricate etiology of neurological disorders, finding interpretable associations between multiomics features can be challenging using standard approaches.
Results: We propose COMICAL, a contrastive learning approach using multiomics data to generate associations between genetic markers and brain imaging-derived phenotypes. COMICAL jointly learns omics representations utilizing transformer-based encoders with custom tokenizers.
Front Psychiatry
August 2025
Statistics Section of the Department of Genetics, Microbiology and Statistics, Universitat de Barcelona (UB), Barcelona, Spain.
Most methodological Polygenic Risk Score (PRS)-related papers explain the laborious process of computing the PRS in great depth. Afterwards, as a last step, it is generally described that to test a possible association between a PRS and a trait of interest, an analysis through regression models (linear or logistic, depending on data type) should be carried out adjusting for covariates (e.g.
View Article and Find Full Text PDF