98%
921
2 minutes
20
A key goal of synthetic biology is to engineer organisms that can use solar energy to convert CO to biomass, chemicals, and fuels. We engineered a light-dependent electron transfer chain by integrating rhodopsin and an electron donor to form a closed redox loop, which drives rhodopsin-dependent CO fixation. A light-driven proton pump comprising rhodopsin (GR) and its cofactor retinal have been assembled in () H16. In the presence of light, this strain fixed inorganic carbon (or bicarbonate) leading to 20% growth enhancement, when formate was used as an electron donor. We found that an electrode from a solar panel can replace organic compounds to serve as the electron donor, mediated by the electron shuttle molecule riboflavin. In this new autotrophic and photo-electrosynthetic system, GR is augmented by an external photocell for reductive CO fixation. We demonstrated that this hybrid photo-electrosynthetic pathway can drive the engineered strain to grow using CO as the sole carbon source. In this system, a bioreactor with only two inputs, light and CO, enables the strain to perform a rhodopsin-dependent autotrophic growth. Light energy alone, supplied by a solar panel, can drive the conversion of CO into biomass with a maximum electron transfer efficiency of 20%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680020 | PMC |
http://dx.doi.org/10.1021/acssynbio.2c00397 | DOI Listing |
Sci Adv
September 2025
Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
Sterols are essential isoprenoid derivatives that contribute to membrane structure and function. In plants, they also serve as precursors to phytohormones and specialized metabolites important for development, defense, and health. Although the sterol biosynthetic pathway is considered well-characterized, we report the discovery of a plant-specific cytochrome -like protein, CB5LP, as a critical component of phytosterol biosynthesis.
View Article and Find Full Text PDFOrg Lett
September 2025
Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States.
This communication describes a straightforward method for the trifluoromethylborylation of unactivated alkenes. The reaction proceeds through the formation of an electron donor-acceptor (EDA) complex between a trifluoromethylthiophenium salt and bis(catechol)diboron under broad-spectrum white-light irradiation. Due to the mild reaction conditions, the trifluoromethylborylation tolerates a wide range of functional groups, including esters, acids, alcohols, epoxides, and a variety of heterocycles.
View Article and Find Full Text PDFAnal Chem
September 2025
Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China.
Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.
View Article and Find Full Text PDFChemistry
September 2025
Research School of Chemistry, Australian National University, Canberra, ACT, 2610, Australia.
Multi-layered and orthogonal recognition is an excellent route to controlled molecular complexity. Here we report a series of heteroleptic complexes where two ligands pair together at a palladium(II) metal centre in complementary fashion and with orthogonality to others pairs. This complementarity is driven in part through hydrogen-bonding acceptor or donor sites proximal to the coordination domain (either DD:AA or AD:DA).
View Article and Find Full Text PDFCureus
August 2025
Acute Medicine, Weston General Hospital, University Hospitals Bristol and Weston, Weston-super-Mare, GBR.
Methemoglobinemia is an uncommon yet potentially life-threatening condition that results from the oxidation of iron from the ferrous (Fe²⁺) to the ferric (Fe³⁺) state, rendering hemoglobin unable to effectively transport oxygen. This translates into a state of functional hypoxia despite adequate arterial oxygen tension. Among the various causes of acquired methemoglobinemia, recreational inhalation of alkyl nitrites, widely known as "poppers," is a notable but underrecognized trigger.
View Article and Find Full Text PDF