Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of drugs that lower blood glucose levels while decreasing blood pressure, volume loss, and weight loss. SGLT2 inhibitors were studied to determine their effectiveness in treating cardiovascular disease and their side effects. Study outcomes related to cardiovascular and metabolic outcomes were examined in patients on SGLT2 inhibitors by searching PubMed, Embase, Cochrane, and SCOPUS. Articles related to clinical trials, reviews, and meta-analyses were considered. A review of SGLT2 inhibitors' mechanisms of action in preventing cardiovascular (CVS) disease progression was described. We then reviewed the possible effects of SGLT2 inhibitors on CVS dysfunction development, composition, and stability. In the following, we discussed the impact of SGLT2 inhibitors on CVD events, such as ischemic strokes and myocardial infarctions, and their role in treating congestive heart failure and cardiovascular mortality.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1874467216666221017123333DOI Listing

Publication Analysis

Top Keywords

sglt2 inhibitors
24
inhibitors
6
sglt2
6
cardiovascular
5
influence sglt2
4
inhibitors remodeling
4
remodeling substrate
4
substrate ion
4
ion metabolism
4
metabolism myocardium
4

Similar Publications

Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.

View Article and Find Full Text PDF

The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.

View Article and Find Full Text PDF

SGLT-2 inhibitors are a relatively new class of antidiabetic drugs. They activate a transcriptional response similar to calorie restriction characterized by the up-regulation of sensors involved in nutrient deprivation, such as SIRT1 and AMPK, and the down-regulation of mTOR, a molecule involved in nutritional excess signaling. The purpose of this review is to illustrate the main pathways of nutrient deprivation: a complex mechanistic framework partly responsible for the cardio-renal benefits that makes these drugs unique.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, such as Empagliflozin, are antidiabetic drugs that reduce glucose levels and have emerged as a promising therapy for patients with heart failure (HF), although the exact molecular mechanisms underlying their cardioprotective effects remain to be fully elucidated. The EmDia study, a randomized, double-blind trial conducted at the University Medical Center of Mainz, has confirmed the beneficial effects of Empagliflozin in HF patients after both one and twelve weeks of treatment. In this work, we aimed to assess whether changes in lipid profiles driven by Empagliflozin use in HF patients in the EmDia trial could assist in gaining a better understanding of its cardioprotective mechanisms.

View Article and Find Full Text PDF