Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
An intensity-interrogated optical fiber hot-wire anemometer based on the chirp effect of fiber Bragg grating (FBG) is presented. The FBG is coated with a silver film and heated optically by a 1480 nm laser beam, which is coupled into the fiber cladding by a long-period grating (LPG) and absorbed by the silver film to convert to thermal heat. Due to the gradual decrease of laser power along the length of the FBG, a temperature gradient is formed that induces a chirp effect to the FBG. Bandwidth of the FBG's reflection spectrum is therefore broadened that increases its reflected light power. The chirp rate of the FBG reduces with airflow velocity since the temperature gradient is weakened under the cooling effect of the airflow, resulting in a certain relationship between the reflected power of the FBG and airflow velocity. In the experiment, by detecting the reflected power of the FBG, airflow velocity measurement is achieved successfully with a high sensitivity up to -28.60 µW/(m·s) at airflow velocity of 0.1 m/s and a dynamic response time of under one second. The measurement range is up to 0 to 11 m/s. The intensity interrogation scheme of the FBG hot-wire anemometer reduces its cost greatly and makes it a promising solution for airflow velocity measurement in practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.470781 | DOI Listing |