98%
921
2 minutes
20
The pH-low insertion peptides (pHLIP) are pH-dependent membrane inserting peptides, whose function depends on the cell microenvironment acidity. Several peptide variants have been designed to improve upon the -sequence, particularly the state transition kinetics and the selectivity for tumor pH. The variant 3 (Var3) peptide is a 27 residue long peptide, with a key titrating residue (Asp-13) that, despite showing a modest performance in liposomes (p ∼ 5.0), excelled in tumor cell experiments. To help rationalize these results, we focused on the pH gradient in the cell membrane, which is one of the crucial properties that are not present in liposomes. We extended our CpHMD-L method and its pH replica-exchange (pHRE) implementation to include a pH gradient and mimic the pHLIP-membrane microenvironment in a cell where the internal pH is fixed (pH 7.2) and the external pH is allowed to change. We showed that, by properly modeling the pH-gradient, we can correctly predict the experimentally observed loss and gain of performance in tumor cells experiments by the and Var3 sequences, respectively. In sum, the pH gradient implementation allowed for more accurate and realistic p estimations and was a pivotal step in bridging the data and the cell experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775217 | PMC |
http://dx.doi.org/10.1021/acs.jctc.2c00880 | DOI Listing |
Sci Transl Med
September 2025
Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
IFN-β, a type I interferon, has been used as a first-line therapy for patients with multiple sclerosis (MS) for more than 30 years; however, the cellular and molecular basis of its therapeutic efficacy remains unclear. Here, we first used experimental autoimmune encephalomyelitis (EAE), a mouse model for MS, to show that the therapeutic effects of IFN-β were associated with a down-regulation of microRNA-21 (miR-21) and pathogenic T17 (pT17) cells. In vitro experiments demonstrated that genetic knockout of miR-21 directly inhibited pathogenic T17 cell differentiation.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.
View Article and Find Full Text PDFMol Biol Rep
September 2025
College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.
Background: A secondary Pasteurella multocida (Pm) infection following Mycoplasma ovipneumoniae (Mo) challenge in sheep results in severe respiratory disease. Scavenger receptor A (SRA) is a key phagocytic receptor on macrophages, which facilitates microbial clearance. However, the role of sheep SRA in Mo-associated secondary Pm infection is less understood.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.
Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, 560107, India.
This study aimed to synthesize and evaluate the anticancer activity of novel chalcone derivative against colon cancer by in vitro cytotoxicity against HCT-116 (Research Resource Identifiers:CVCL_D4JB) cell line and in vivo using EAC (Research Resource Identifiers: CVCL_1306) and DLA (Research Resource Identifiers: CVCL_VR37) cells inoculated Swiss albino mice. The present study aimed to synthesize the new chalcone derivatives and conduct its anti-colon cancer activity both in vitro and in vivo. The designed compounds were subjected to in silico studies like binding pocket analysis, molecular docking, and ADME studies.
View Article and Find Full Text PDF