98%
921
2 minutes
20
During mitosis, chromatin is condensed and organized into mitotic chromosomes. Condensation is critical for genome stability and dynamics, yet the degree of condensation is significantly different between multicellular and single-cell eukaryotes. What is less clear is whether there is a minimum degree of chromosome condensation in unicellular eukaryotes. Here, we exploited two-photon microscopy to analyze chromatin condensation in live and fixed cells, enabling studies of some organisms that are not readily amenable to genetic modification. This includes the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, and Candida albicans, as well as a protist Trypanosoma brucei. We found that mitotic chromosomes in this range of species are condensed about 1.5-fold relative to interphase chromatin. In addition, we used two-photon microscopy to reveal that chromatin reorganization in interphase human hepatoma cells infected by the hepatitis C virus is decondensed compared to uninfected cells, which correlates with the previously reported viral-induced changes in chromatin dynamics. This work demonstrates the power of two-photon microscopy to analyze chromatin in a broad range of cell types and conditions, including non-model single-cell eukaryotes. We suggest that similar condensation levels are an evolutionarily conserved property in unicellular eukaryotes and important for proper chromosome segregation. Furthermore, this provides new insights into the process of chromatin condensation during mitosis in unicellular organisms as well as the response of human cells to viral infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576780 | PMC |
http://dx.doi.org/10.1038/s41598-022-22340-8 | DOI Listing |
J Chem Phys
September 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
We study how protein condensates respond to a site of active RNA transcription (i.e., a gene promoter) due to electrostatic protein-RNA interactions.
View Article and Find Full Text PDFNat Cell Biol
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
The ataxia telangiectasia mutated (ATM) kinase orchestrates the early stages of DNA double-strand break repair by promoting hyperphosphorylation of CtIP, a key step in the initiation of DNA end resection. However, the regulatory mechanisms controlling resection extent remain incompletely understood. Here we identify ERCC6L2 as a key regulator of DNA end resection in response to ATM inhibition.
View Article and Find Full Text PDFAnn N Y Acad Sci
September 2025
Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
The genome stores and processes approximately 1.5 gigabytes of encoded information. In this article, we propose that the eukaryotic genome and its adaptable three-dimensional packing in the form of chromatin offer a valuable template for the system architecture of DNA-based digital computers.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA.
Opposing activities of conserved chromatin regulatory complexes, such as the Polycomb Repressive Complex 1 (PRC1) and the activating chromatin remodeler SWI/SNF play critical roles in regulating gene expression during development and differentiation. The mechanisms by which these complexes compete to regulate chromatin states remain poorly understood. We combine single-molecule analysis and genomic approaches in cultured cells to demonstrate that the condensate-forming properties of PRC1 play an important role in excluding SWI/SNF from chromatin.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai 200032, China; Clinical Center for Biotherapy, Zhongshan Hospital; Fudan University, Shanghai 200032, China. Electronic address: wu.weizhong@zs-hospital
Background: Ferroptosis, a novel type of regulated cell death driven by iron-dependent lipid peroxide accumulation, represents a promising therapeutic strategy for aggressive cancers. However, the molecular mechanism of ferroptosis in hepatocellular carcinoma (HCC) remains elusive.
Methods: RNA sequencing (RNA-seq) identified Activating transcription factor 3 (ATF3) as a key regulator of ferroptosis susceptibility.