98%
921
2 minutes
20
De novo protein design enables the exploration of novel sequences and structures absent from the natural protein universe. De novo design also stands as a stringent test for our understanding of the underlying physical principles of protein folding and may lead to the development of proteins with unmatched functional characteristics. The first fundamental challenge of de novo design is to devise "designable" structural templates leading to sequences that will adopt the predicted fold. Here, we built on the TopoBuilder (TB) de novo design method, to automatically assemble structural templates with native-like features starting from string descriptors that capture the overall topology of proteins. Our framework eliminates the dependency of hand-crafted and fold-specific rules through an iterative, data-driven approach that extracts geometrical parameters from structural tertiary motifs. We evaluated the TopoBuilder framework by designing sequences for a set of five protein folds and experimental characterization revealed that several sequences were folded and stable in solution. The TopoBuilder de novo design framework will be broadly useful to guide the generation of artificial proteins with customized geometries, enabling the exploration of the protein universe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618129 | PMC |
http://dx.doi.org/10.1073/pnas.2206111119 | DOI Listing |
Diabetologia
September 2025
Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.
View Article and Find Full Text PDFDiabetologia
September 2025
Centre Universitaire de Diabétologie et de ses Complications, AP-HP, Hôpital Lariboisière, Paris, France.
Aims/hypothesis: Severe hypoglycaemia events (SHE) remain frequent in people with type 1 diabetes despite advanced diabetes technologies. We examined whether time below range (TBR) 3.9 mmol/l (70 mg/dl; TBR70) or 3.
View Article and Find Full Text PDFPest Manag Sci
September 2025
National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People's Republic of China.
Background: Rapid advances in generative artificial intelligence (AI) are accelerating the process of pesticide development. However, transfer learning-based de novo design focuses on generating molecules that are highly similar to existing inhibitors, which may limit the exploration of novel scaffolds and thereby constrain innovative breakthroughs in pesticide development.
Results: This study proposes a new strategy for fungicide design using antibiotics.
Diabetes Care
September 2025
Victorian Virtual Emergency Department, Northern Health, Epping, Victoria, Australia.
Objective: New approaches to diabetes care are needed to better identify and manage diabetes emergencies outside of hospitals.
Research Design And Methods: A descriptive analysis of routinely collected data was conducted using data from the Victorian Virtual Emergency Department (VVED) Diabetes, a telehealth service that provides emergency care, including ketone testing by ambulance personnel, for patients across Victoria, Australia, experiencing non-life-threatening diabetes-related emergencies.
Results: Between July and December 2024, VVED Diabetes managed 868 diabetes-related emergencies, with 82.
J Neurol
September 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Background: The "Systematic Screening of Handwriting Difficulties in Parkinson's Disease" (SOS) test is the only tool specifically designed to evaluate handwriting in people with Parkinson's Disease (pwPD). It is language specific.
Objective: To assess the construct validity, intrarater and interrater reliability of the Italian version of the SOS test.