Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In the last three decades, a wide range of protein features have been discovered to annotate a protein. Numerous attempts have been made to integrate these features in a software package/platform so that the user may compute a wide range of features from a single source. To complement the existing methods, we developed a method, Pfeature, for computing a wide range of protein features. Pfeature allows to compute more than 200,000 features required for predicting the overall function of a protein, residue-level annotation of a protein, and function of chemically modified peptides. It has six major modules, namely, composition, binary profiles, evolutionary information, structural features, patterns, and model building. Composition module facilitates to compute most of the existing compositional features, plus novel features. The binary profile of amino acid sequences allows to compute the fraction of each type of residue as well as its position. The evolutionary information module allows to compute evolutionary information of a protein in the form of a position-specific scoring matrix profile generated using Position-Specific Iterative Basic Local Alignment Search Tool (PSI-BLAST); fit for annotation of a protein and its residues. A structural module was developed for computing of structural features/descriptors from a tertiary structure of a protein. These features are suitable to predict the therapeutic potential of a protein containing non-natural or chemically modified residues. The model-building module allows to implement various machine learning techniques for developing classification and regression models as well as feature selection. Pfeature also allows the generation of overlapping patterns and features from a protein. A user-friendly Pfeature is available as a web server python library and stand-alone package.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cmb.2022.0241 | DOI Listing |