A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Combining parametric and nonparametric models to estimate treatment effects in observational studies. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Performing causal inference in observational studies requires we assume confounding variables are correctly adjusted for. In settings with few discrete-valued confounders, standard models can be employed. However, as the number of confounders increases these models become less feasible as there are fewer observations available for each unique combination of confounding variables. In this paper, we propose a new model for estimating treatment effects in observational studies that incorporates both parametric and nonparametric outcome models. By conceptually splitting the data, we can combine these models while maintaining a conjugate framework, allowing us to avoid the use of Markov chain Monte Carlo (MCMC) methods. Approximations using the central limit theorem and random sampling allow our method to be scaled to high-dimensional confounders. Through simulation studies we show our method can be competitive with benchmark models while maintaining efficient computation, and illustrate the method on a large epidemiological health survey.

Download full-text PDF

Source
http://dx.doi.org/10.1111/biom.13776DOI Listing

Publication Analysis

Top Keywords

observational studies
12
parametric nonparametric
8
treatment effects
8
effects observational
8
confounding variables
8
models maintaining
8
models
6
combining parametric
4
nonparametric models
4
models estimate
4

Similar Publications