98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.echo.2022.10.004 | DOI Listing |
ACS Sens
September 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
Dopamine (DA) signaling is essential for neurodevelopment and is particularly sensitive to disruption during adolescence. Protein restriction (PR) can impair DA dynamics, yet mechanistic insights remain limited due to challenges in real-time neurochemical sensing. Here, we present aptCFE, a robust implantable aptamer-based sensor fabricated via a reagent-free, 3 min electrochemical conjugation (E-conjugation) using amine-quinone chemistry.
View Article and Find Full Text PDFChannels (Austin)
December 2025
Biorheology Research Laboratory, Faculty of Health, Griffith University, Gold Coast, Australia.
The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.
View Article and Find Full Text PDFGenetics
September 2025
Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China.
Acoustic tweezers leverage acoustic radiation forces for noncontact manipulation. One of the core bottlenecks in multidimensional manipulation is the lack of a systematic design methodology, which prevents the generation of an acoustic field that simultaneously meets the collaborative control requirements of multi-degree-of-freedom forces and torques, making it difficult to achieve precise control under conditions of stable suspension, high-frequency rotation, and complex spatial constraints. To address this challenge, we develop an end-to-end inverse design methodology for acoustic tweezers based on coding metasurfaces, establishing a dual-objective, dual-scale optimization paradigm.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Faculty of Science, Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
Predictive coding (PC) proposes that our brains work as an inference machine, generating an internal model of the world and minimizing predictions errors (i.e., differences between external sensory evidence and internal prediction signals).
View Article and Find Full Text PDF