Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
β-Elemene is the major constituent of the antitumor drugs elemene extract approved in China. By incorporating macrocyclization strategy into the β-elemene skeleton, we designed a series of novel macrocycles retaining three key carbon-carbon double bonds. Four different methods have been successfully developed for these challenging ring systems. A total of twenty-eight 14- to 24-membered macrocycles were synthesized. Most of these macrocycles exhibited good antitumor activity against several cancer cell lines (PC-3, A549, U87MG, U251 and HCT116), with up to 40 folds improvement of activity comparing to β-elemene. Additionally, X-ray single crystal structures of compounds Ic, Ip, and IIh were successfully solved as the proof of macrocycle formation. The results warrant the further investigation of this novel class macrocycles in pharmacokinetic and pharmacodynamics studies, which will be reported in due course.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2022.117049 | DOI Listing |