Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Interference is the mechanism through which waves can be structured into the most fascinating patterns. While for sensing, imaging, trapping, or in fundamental investigations, structured waves play nowadays an important role and are becoming the subject of many interesting studies. Using a coherent optical field as a probe, we show how to structure light into distributions presenting collapse and revival structures in its wavefront. These distributions are obtained from the Fourier spectrum of an arrangement of aperiodic diffracting structures. Interestingly, the resulting interference may present quasiperiodic structures of diffraction peaks on a number of distance scales, even though the diffracting structure is not periodic. We establish an analogy with revival phenomena in the evolution of quantum mechanical systems and illustrate this computation numerically and experimentally, obtaining excellent agreement with the proposed theory.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.459483DOI Listing

Publication Analysis

Top Keywords

optical computing
4
computing quantum
4
quantum revivals
4
revivals interference
4
interference mechanism
4
mechanism waves
4
waves structured
4
structured fascinating
4
fascinating patterns
4
patterns sensing
4

Similar Publications

Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.

Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.

View Article and Find Full Text PDF

Background: Optical coherence tomography (OCT) with artificial intelligence (AI) has been developed.

Aims: The study aimed to evaluate the differences between AI-quantified and visual assessments.

Methods: Patients scheduled for OCT-guided percutaneous coronary intervention between September 2021 and October 2022 were included.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Despite advances in genomic diagnostics, the majority of individuals with rare diseases remain without a confirmed genetic diagnosis. The rapid emergence of advanced omics technologies, such as long-read genome sequencing, optical genome mapping and multiomic profiling, has improved diagnostic yield but also substantially increased analytical and interpretational complexity. Addressing this complexity requires systematic multidisciplinary collaboration, as recently demonstrated by targeted diagnostic workshops.

View Article and Find Full Text PDF

Optoelectronic polymer memristors with dynamic control for power-efficient in-sensor edge computing.

Light Sci Appl

September 2025

State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.

As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.

View Article and Find Full Text PDF