Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Catechin is a flavonoid naturally present in numerous dietary products and fruits (e.g., apples, berries, grape seeds, kiwis, green tea, red wine, etc.) and has previously been shown to be an antioxidant and beneficial for the gut microbiome. To further enhance the health benefits, bioavailability, and stability of catechin, we synthesized and characterized catechin pentaacetate and catechin pentabutanoate as two new ester derivatives of catechin. Catechin and its derivatives were assessed in vivo via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); (2) deionized H2O (control); (3) Tween (0.004 mg/mL dose); (4) inulin (50 mg/mL dose); (5) Catechin (6.2 mg/mL dose); (6) Catechin pentaacetate (10 mg/mL dose); and (7) Catechin pentabutanoate (12.8 mg/mL dose). The effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Compared to the controls, our results demonstrated a significant (p < 0.05) decrease in Clostridium genera and E. coli species density with catechin and its synthetic derivative exposure. Furthermore, catechin and its derivatives decreased iron and zinc transporter (Ferroportin and ZnT1, respectively) gene expression in the duodenum compared to the controls. In conclusion, catechin and its synthetic derivatives have the potential to improve intestinal morphology and functionality and positively modulate the microbiome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572352 | PMC |
http://dx.doi.org/10.3390/nu14193924 | DOI Listing |