98%
921
2 minutes
20
Bio-macromolecules have potential applications in cancer treatment due to their high selectivity and efficiency in hitting therapeutic targets. However, poor cell membrane permeability has limited their broad-spectrum application in cancer treatment. The current study developed highly internalizable anti-c-MET antibody Fab fusion proteins with intracellular epitope peptide chimera to achieve the dual intervention from the extracellular to intracellular targets in tumor therapy. In vitro experiments demonstrated that the fusion proteins could interfere with the disease-associated intracellular signaling pathways and inhibit the uncontrolled proliferation of tumor cells. Importantly, investigation of the underlying mechanism revealed that these protein chimeras could induce vacuolation in treated cells, thus interfering with the normal extension and arrangement of microtubules as well as the mitosis, leading to the induction of methuosis-mediated cell death. Furthermore, in vivo tumor models indicated that certain doses of fusion proteins could inhibit the A549 xenograft tumors in NOD SCID mice. This study thus provides new ideas for the intracellular delivery of bio-macromolecules and the dual intervention against tumor cell signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569552 | PMC |
http://dx.doi.org/10.3390/ijms231912018 | DOI Listing |
Background: This study aims to gain further insights into the characteristics of the rare subtype of acute myeloid leukemia (AML) with BCR∷ABL by analyzing laboratory detection results of various gene mutations, such as NPM1.
Methods: Laboratory detection results of multiple gene missense mutations, including NPM1, were analyzed in a case of primary AML with BCR∷ABL.
Results: The patient exhibited morphological features of acute leukemia in the bone marrow.
ACS Synth Biol
September 2025
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.
Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China.
d-Amino acid oxidase from (DAAO) is valuable for pharmaceutical and chemical synthesis due to its high enantioselectivity, but its poor thermostability limits extensive application. This study proposed a synergistic strategy of "sequence consensus design coupled with structure modification" to enhance DAAO thermostability. Through homologous sequence analysis and greedy algorithm-based optimization, a triple mutant M3 (S18T/V7I/Y132F) was obtained, showing a 3.
View Article and Find Full Text PDFSci Rep
September 2025
Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
If iPS cells can be established easily and efficiently using freshly collected blood cells, it will enhance regenerative and personalized medicine. While reports of iPS derivation from blood-derived endothelial progenitor cells using RNA have been documented, none have been reported from peripheral blood-derived mononuclear cells (PBMCs). In this study, we established a method to generate iPS cells from PBMCs using synthetic RNAs and found that MDM4, which suppresses p53, improved reprogramming efficiency.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
September 2025
Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Mediacal College, Beijing 100730, China.