98%
921
2 minutes
20
Background: Platelets can support cancer progression via the release of microparticles and microvesicles that enhance the migratory behaviour of recipient cancer cells. We recently showed that platelet-derived extracellular vesicles (PEVs) stimulate migration and invasiveness in highly metastatic MDA-MB-231 cells by stimulating the phosphorylation of p38 MAPK and the myosin light chain 2 (MLC2). Herein, we assessed whether the pro-migratory effect of PEVs involves the remodelling of the Ca handling machinery, which drives MDA-MB-231 cell motility.
Methods: PEVs were isolated from human blood platelets, and Fura-2/AM Ca imaging, RT-qPCR, and immunoblotting were exploited to assess their effect on intracellular Ca dynamics and Ca-dependent migratory processes in MDA-MB-231 cells.
Results: Pretreating MDA-MB-231 cells with PEVs for 24 h caused an increase in Ca release from the endoplasmic reticulum (ER) due to the up-regulation of SERCA2B and InsPR1/InsPR2 mRNAs and proteins. The consequent enhancement of ER Ca depletion led to a significant increase in store-operated Ca entry. The larger Ca mobilization from the ER was required to potentiate serum-induced migration by recruiting p38 MAPK and MLC2.
Conclusions: PEVs stimulate migration in the highly metastatic MDA-MB-231 breast cancer cell line by inducing a partial remodelling of the Ca handling machinery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564117 | PMC |
http://dx.doi.org/10.3390/cells11193120 | DOI Listing |
Mol Cell Biochem
September 2025
Department of Laboratory Medicine, The People's Hospital of Zhongjiang, No. 96, Dabei Street, Kaijiang Town, Zhongjiang County, Deyang City, 618100, Sichuan Province, China.
5-methylcytosine (m5C) methylation is a post-transcriptional modification of RNAs, and its dysregulation plays pro-tumorigenic roles in lung adenocarcinoma (LUAD). Here, this study elucidated the mechanism of action of NSUN2, a major m5C methyltransferase, on LUAD progression. mRNA expression was analyzed by quantitative PCR.
View Article and Find Full Text PDFFront Immunol
September 2025
Institute of Pulmonary Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
Neutrophil extracellular traps (NETs) are DNA-protein structures released during a form of programmed neutrophil death known as NETosis. While NETs have been implicated in both tumor inhibition and promotion, their functional role in cancer remains ambiguous. In this study, we compared the NET-forming capacity and functional effects of NETs derived from lung cancer (LC) patients and healthy donors (H).
View Article and Find Full Text PDFBiofabrication
September 2025
Institute of Macromolecular Chemistry, Institute of Macromolecular Chemistry Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Prague, Prague, 162 06, CZECH REPUBLIC.
Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developed GrooveNeuroTube is composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.
View Article and Find Full Text PDFImmunology
September 2025
Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan, ROC.
Enolase-1 (ENO1) is a moonlighting protein with multiple functions. When expressed on the cell surface, ENO1 binds plasminogen (PLG) and promotes cell migration by facilitating plasmin (PLM)-mediated extracellular matrix degradation. Here, we observed that inflammatory stimulation significantly upregulated ENO1 expression on the neutrophil surface, both in vitro and in vivo.
View Article and Find Full Text PDF