98%
921
2 minutes
20
Crucial steps toward designing water sorption materials and fine-tuning their properties for specific applications include precise identification of adsorption sites and establishment of rigorous molecular-level insight into the water adsorption process. We report stepwise crystallographic mapping and density functional theory computations of adsorbed water molecules in ALP-MOF-1, a metal-organic framework decorated with distinct open metal sites and carbonyl functional groups that serve as water anchoring sites for seeding the nucleation of a complex water network. Identification of an unusual water adsorption step in ALP-MOF-1 motivated the tuning of metal ion composition to adjust water uptake. These studies provide direct evidence that the identity of the open metal sites in MOFs can dramatically affect water adsorption behavior between 0 and ∼20% RH and that multiple proximal water anchoring sites along the MOF skeleton facilitate water uptake which could be potentially useful for applications requiring rapid and energetically facile water sorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c08717 | DOI Listing |
Environ Monit Assess
September 2025
Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India.
Synthetic dyes, such as Congo red (CR), pose serious threats to human health and aquatic ecosystems because of their carcinogenicity and resistance to degradation, necessitating the development of efficient and eco-friendly remediation strategies. In this study, silver nanoparticles (AgNPs) were synthesized via a green method using Ocimum sanctum (holy basil) leaf extract and applied for CR dye removal from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) based on Box-Behnken design (BBD), evaluating the influence of key parameters including pH, AgNP dosage, initial dye concentration, contact time, and temperature.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Oil & Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China.
With the acceleration of global industrialization, a large amount of polluted wastewater is discharged indiscriminately, which both pollutes the environment and threatens human health. In this study, by constructing a binary system of unsaturated polyester resin/carboxychitosan, and improving the inherent defects of carboxychitosan aerogel, we successfully prepared aerogels with high porosity, low density, and laminar porous structure for water remediation by using a combination of the sol-gel method and directional freezing technology. Thanks to the synergistic effect of surface wettability and special pore structure, the aerogel not only adsorbs and separates MB and Pb(II) efficiently with a separation efficiency of more than 99 %, but also has a separation efficiency of 99.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China. Electronic address:
Biomass containing inorganic ingredients can be converted into highly porous biochar via in-situ activation and templating process. Here, N-doped biochar is obtained by pyrolysis of spinach organs for efficient dye removal, using methylene blue (MB) as a model dye, and pyrolysis temperature plays a critical role in determining both porosity and N-species within biochar. Significantly, leaf biochar (LC-900) as pyrolyzed at 900 °C shows surface areas of 1263 m/g larger than that of biochar from stem and root, indicating a dependence on the biomass organ source.
View Article and Find Full Text PDFEnviron Res
September 2025
College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial University Key Laboratory of Poll
The derivation of defect-engineered metal-organic frameworks (MOFs) from industrial waste simultaneously mitigates environmental pollution, reduces MOF synthesis costs, and enhances adsorption performance. Herein, this study demonstrates a sustainable strategy for the resourceful synthesis of iron-based MOF s-MIL-100(Fe) using galvanizing pickling waste liquor (80.5 wt.
View Article and Find Full Text PDFWater Res
September 2025
College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China. Electronic address:
Microplastics (MPs)-derived dissolved organic matter (MPs-DOM) is emerging as a significant contributor to environmental DOM pools. However, the molecular-scale processes governing its interactions with mineral and their effects on photoreactivity remain poorly understood. This study elucidates the structure-dependent molecular transformations and photochemical reactivity of DOM during its interaction with goethite, revealing distinct mechanisms driving reactive oxygen species (ROS) dynamics.
View Article and Find Full Text PDF