Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Herein, we present a substrate-controlled regiodivergent strategy for the selective synthesis of C3 or C2-alkynylated indoles ruthenium-catalyzed [3 + 2]-annulation of readily available pyrazolidinones and 1,3-diynes. Remarkably, C3-alkynylated indoles were obtained in good yields when 1,4-diarylbuta-1,3-diynes were employed as the coupling partners. On the other hand, dialkyl-1,3-diynes led to the selective formation of C2-alkynylated indoles. The key features of the strategy are the operationally simple conditions and external-oxidant-free, broad-scope, and substrate-switchable indole synthesis. Scale-up reactions and further transformations expanded the synthetic utility of the protocol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.2c01691 | DOI Listing |