Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The IL-6 family of cytokines, known for their pleiotropic behavior, share binding to the gp130 receptor for signal transduction with the necessity to bind other receptors. Leukemia inhibitory factor receptor is triggered by the IL-6 family proteins: leukemia inhibitory factor (LIF), oncostatin-M (OSM), cardiotrophin-1 (CT-1), ciliary neurotrophic factor (CNTF), and cardiotrophin-like cytokine factor 1 (CLCF1). Besides the conserved binding sites to the receptor, not much is known in terms of the diversity and characteristics of these proteins in different organisms. Herein, we describe the sequence analysis of LIF, OSM, and CT-1 from several organisms, and m17, a LIF ortholog found in fishes, regarding its phylogenetics, intrinsic properties, and the impact of conserved residues on structural features. Sequences were identified in seven classes of vertebrates, showing high conservation values in binding site III, but protein-dependent results on binding site II. GRAVY, isoelectric point, and molecular weight parameters were relevant to differentiate classes in each protein and to enable, for the first time and with high fidelity, the prediction of both organism class and protein type just using machine learning approaches. OSM sequences from primates showed an increased BC loop when compared to the remaining mammals, which could influence binding to OSM receptor and tune signaling pathways. Overall, this study highlights the potential of sequence diversity analysis to understand IL-6 cytokine family evolution, showing the conservation of function-related motifs and evolution of class and protein-dependent characteristics. Our results could impact future medical treatment of disorders associated with imbalances in these cytokines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601804PMC
http://dx.doi.org/10.1002/pro.4469DOI Listing

Publication Analysis

Top Keywords

il-6 family
8
leukemia inhibitory
8
inhibitory factor
8
binding site
8
binding
5
uncovering promiscuous
4
promiscuous activity
4
il-6
4
activity il-6
4
il-6 proteins
4

Similar Publications

Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.

Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.

View Article and Find Full Text PDF

Objectives: This study investigated the cardioprotective effects of stachydrine (STA) in lipopolysaccharide (LPS)-induced septic mice and H9c2 cardiomyocytes, focusing on its anti-apoptotic, anti-inflammatory, and anti-ferroptotic actions.

Methods: We established an LPS-induced sepsis model in mice and an LPS-stimulated H9c2 cardiomyocyte model in vitro.

Results: STA markedly reduced LPS-induced myocardial apoptosis, as demonstrated by decreased TUNEL-positive cells, and attenuated the elevation of serum cardiac injury markers, including creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), brain natriuretic peptide (BNP), cardiac troponin I (cTnI), and cardiac troponin T (cTnT) levels.

View Article and Find Full Text PDF

Introduction: The pathological mechanism of sepsis-related acute lung injury (ALI) is closely linked to mitochondrial dysfunction and pyroptosis. Although low-dose extracorporeal shock wave (SW) therapy has been widely utilized in tissue and organ injury repair, its role in sepsis-related ALI remains unclear. This study aimed to elucidate the regulatory mechanisms of SW on mitochondrial pyroptosis crosstalk in septic ALI.

View Article and Find Full Text PDF

Type 2 diabetes (T2DM) and tuberculosis (TB) both regulate inflammation and may exert synergistic or antagonistic effects through shared immune pathways. Previous studies have demonstrated that T2DM is a risk factor for TB. However, at the level of gene regulatory networks, it remains unclear whether there are key interaction nodes linking these two diseases.

View Article and Find Full Text PDF

Dendritic Cells Induce Clec5a-mediated Immune Modulation in MPTP-induced Parkinson's Disease Mouse Model.

Front Biosci (Landmark Ed)

August 2025

Division of Life Sciences and Department of Life Science, Graduate School, CHA University, 13488 Seongnam-si, Gyeonggi-do, Republic of Korea.

Background: Parkinson's disease (PD) is characterized by a progressive decline in dopaminergic neurons within the substantia nigra (SN). Although its underlying cause has yet to be fully elucidated, accumulating evidence suggests that neuroinflammation contributes substantially to disease development. Treatment strategies targeting neuroinflammation could improve PD outcomes.

View Article and Find Full Text PDF