Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The rapid development of biotechnology has provided new perspectives to observe and helped to gradually understand the significance of genetic instability in Actinobacteria. High frequency deletions of extremities and abnormal methylation of chromosomes suggest there might be relevant between the two phenomena. With this suspicion, we used single molecule real-time (SMRT) sequencing to map the genome-level methylation of one branch of actinomycetes, Saccharopolyspora erythraea, which have ring-shaped chromosomes. S. erythraea used for analysis in this study shares the same highly unstable phenotypic traits, as evidenced by diverse spore morphology and fluctuating erythromycin production. Multiple amplification of genomic islands closes to the replication initiation site and 6-methyladenine (m6A) deletion in genomic islands suggest that the interaction between the restriction modification (R-M) system and transposable elements provides an explanation for the division of labor by genomic heterogeneity in actinomycetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2022.146959 | DOI Listing |