Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Structured light beams with distinct spatial inhomogeneity of amplitude, phase, and polarization have garnered tremendous attention in recent years. A better understanding of the vectorial structure of such beams is helpful to reveal their important and interesting features for further applications. In this paper, explicit analytical expressions for the electric field components of typical spatial-structured light beams, including fundamental Gaussian beams, Hermite-Gaussian beams, Laguerre-Gaussian beams, Bessel/Bessel-Gaussian beams, and Airy beams, beyond the paraxial approximation are derived on the basis of the vectorial Rayleigh-Sommerfeld diffraction integrals. Compared with the existing expressions in the literature, the expressions given in this paper are very concise. Using the derived analytical expressions, distributions of the electric field components of these typical structured light beams are displayed and analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.469522 | DOI Listing |