A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Amplitude-Time Dual-View Fused EEG Temporal Feature Learning for Automatic Sleep Staging. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electroencephalogram (EEG) plays an important role in studying brain function and human cognitive performance, and the recognition of EEG signals is vital to develop an automatic sleep staging system. However, due to the complex nonstationary characteristics and the individual difference between subjects, how to obtain the effective signal features of the EEG for practical application is still a challenging task. In this article, we investigate the EEG feature learning problem and propose a novel temporal feature learning method based on amplitude-time dual-view fusion for automatic sleep staging. First, we explore the feature extraction ability of convolutional neural networks for the EEG signal from the perspective of interpretability and construct two new representation signals for the raw EEG from the views of amplitude and time. Then, we extract the amplitude-time signal features that reflect the transformation between different sleep stages from the obtained representation signals by using conventional 1-D CNNs. Furthermore, a hybrid dilation convolution module is used to learn the long-term temporal dependency features of EEG signals, which can overcome the shortcoming that the small-scale convolution kernel can only learn the local signal variation information. Finally, we conduct attention-based feature fusion for the learned dual-view signal features to further improve sleep staging performance. To evaluate the performance of the proposed method, we test 30-s-epoch EEG signal samples for healthy subjects and subjects with mild sleep disorders. The experimental results from the most commonly used datasets show that the proposed method has better sleep staging performance and has the potential for the development and application of an EEG-based automatic sleep staging system.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2022.3210384DOI Listing

Publication Analysis

Top Keywords

sleep staging
24
automatic sleep
16
feature learning
12
signal features
12
eeg
9
amplitude-time dual-view
8
temporal feature
8
sleep
8
eeg signals
8
staging system
8

Similar Publications