98%
921
2 minutes
20
In unstructured dairy programs, pedigree is usually shallow, which leads to biased prediction of breeding values using best linear unbiased prediction (BLUP). The objective of this study was to come out with a genomic prediction strategy that can utilize shallow pedigree information and predict unbiased and more accurate GEBV for sex-limited traits in a small population using single-step GBLUP (ssGBLUP). The data and models for a population under selection were simulated. Out of current 10 generations, 10th generation with 1000 candidates served as validation population. For the complete pedigree scenario, pedigree (P)BLUP estimated breeding values (EBV) were unbiased with accuracy (r) of 0.35 ± 0.02 and 0.26 ± 0.01 for 0.3 and 0.1 h scenario, respectively. For the shallow pedigree, biased prediction of breeding values and low accuracies were obtained with linear decline in the accuracy of EBV for removal of information on more distant pedigree. Accuracy and bias (ρ) for scenario with removing 4 distant generations from pedigree were 0.30 ± 0.02 and 0.55 ± 0.03, respectively, in moderate h scenario. Use of Genomic (G)BLUP, especially with "extreme phenotypic contrast selective genotyping," (TB) resulted in higher accuracy for a small reference of females; however, GEBV were highly biased. We observed that ssGBLUPF, where the numerator relationship matrix is corrected for inbreeding, resulted in more accurate and unbiased estimates of GEBV across shallow pedigree scenario, with TB all female reference (missing 4 distant generations: r = 0.50 ± 0.02; ρ = 0.96 ± 0.02). We recommend use of ssGBLUPF with two tailed selectively genotyped all female reference in shallow pedigree scenarios, to obtain unbiased and accurate GEBV for sex-limited traits, when resources are limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11250-022-03340-2 | DOI Listing |
BMC Ophthalmol
July 2024
Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: To provide a genotype and phenotype characterization of the BEST1 mutation in Chinese patients with autosomal recessive bestrophinopathy (ARB) through multimodal imaging and next-generation sequencing (NGS).
Methods: Seventeen patients from 17 unrelated families of Chinese origin with ARB were included in a retrospective cohort study. Phenotypic characteristics, including anterior segment features, were assessed by multimodal imaging.
Gene
October 2024
Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restor
Background: Traboulsi syndrome is an under-recognized syndromic form of ectopia lentis (EL) caused by the aspartate beta-Hydroxylase (ASPH) variant. The genotype-phenotype profile of ASPH-associated disease is poorly understood due to the rarity of the condition.
Methods: We conducted targeted next-generation sequencing and bioinformatics analysis to identify potentially pathogenic ASPH variants in the cohort.
Biology (Basel)
January 2024
School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia.
Diseases pose a significant and pressing concern for the sustainable development of the aquaculture sector, particularly as their impact continues to grow due to climatic shifts such as rising water temperatures. While various approaches, ranging from biosecurity measures to vaccines, have been devised to combat infectious diseases, their efficacy is disease and species specific and contingent upon a multitude of factors. The fields of genetics and genomics offer effective tools to control and prevent disease outbreaks in aquatic animal species.
View Article and Find Full Text PDFGenet Sel Evol
October 2023
Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain.
Background: In spite of the availability of single nucleotide polymorphism (SNP) array data, differentiation between observed homozygosity and that caused by mating between relatives (autozygosity) introduces major difficulties. Homozygosity estimators show large variation due to different causes, namely, Mendelian sampling, population structure, and differences among chromosomes. Therefore, the ascertainment of how inbreeding is reflected in the genome is still an issue.
View Article and Find Full Text PDFTrop Anim Health Prod
October 2022
Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, 132001, Karnal, Haryana, India.
In unstructured dairy programs, pedigree is usually shallow, which leads to biased prediction of breeding values using best linear unbiased prediction (BLUP). The objective of this study was to come out with a genomic prediction strategy that can utilize shallow pedigree information and predict unbiased and more accurate GEBV for sex-limited traits in a small population using single-step GBLUP (ssGBLUP). The data and models for a population under selection were simulated.
View Article and Find Full Text PDF