Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbes are by far the dominant biomass in the world's oceans and drive biogeochemical cycles that are critical to life on Earth. The composition of marine microbial communities is highly dynamic, spatially and temporally, with consequent effects on their functional roles. In part, these changes in composition result from viral lysis, which is taxon-specific and estimated to account for about half of marine microbial mortality. Here, we show that extracellular ribosomal RNA (rRNA) is produced by viral lysis, and that specific lysed populations can be identified by sequencing rRNA recovered from seawater samples. In ten seawater samples collected at five depths between the surface and 265 m during and following a phytoplankton bloom, lysis was detected in about 15% of 16,946 prokaryotic taxa, identified from amplicon sequence variants (ASVs), with lysis occurring in up to 34% of taxa within a water sample. The ratio of rRNA to cellular rRNA (rRNA) was used as an index of taxon-specific lysis, and revealed that higher relative lysis was most commonly associated with copiotrophic bacteria that were in relatively low abundance, such as those in the genera Escherichia and Shigella spp., as well as members of the Bacteriodetes; whereas, relatively low lysis was more common in taxa that are often relatively abundant, such as members of the Pelagibacterales (i.e., SAR11 clade), cyanobacteria in the genus Synechococcus, and members of the phylum Thaumarchaeota (synonym, Nitrososphaerota) that comprised about 13-15% of the 16 S rRNA gene sequences below 30 m. These results provide an explanation for the long-standing conundrum of why highly productive bacteria that are readily isolated from seawater are often in very low abundance. The ability to estimate taxon-specific cell lysis will help explore the distribution and abundance of microbial populations in nature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751121PMC
http://dx.doi.org/10.1038/s41396-022-01327-3DOI Listing

Publication Analysis

Top Keywords

lysis
9
taxon-specific cell
8
cell lysis
8
marine microbial
8
viral lysis
8
seawater samples
8
low abundance
8
rrna
6
mortality ribosomal
4
ribosomal sequencing
4

Similar Publications

Background: Chimeric antigen receptor T-cell (CAR-T) therapy has transformed the treatment landscape for relapsed or refractory non-Hodgkin lymphoma, achieving a 5-year overall survival rate of 40-50%. However, relapse remains a major challenge, especially due to CD19-negative clones. Epcoritamab, a bispecific antibody targeting CD20 and CD3, offers a potential solution for post-CAR-T relapse; however, clinical data in this setting remain limited, particularly in Japan.

View Article and Find Full Text PDF

Use of a masseter fascia transposition flap for ventral orbital stabilization after partial inferior orbitectomy in a dog.

Can Vet J

September 2025

Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, Kansas 66506, USA.

A 12-year-old neutered male pit bull crossbreed dog was presented because of a right caudal maxillary swelling. Computed tomographic imaging of the skull and revealed a right maxillary mass with lysis of the medial wall of the right orbit and rostral aspect of the zygomatic bone. A biopsy was done, and histopathology results were consistent with a mixed odontogenic tumor.

View Article and Find Full Text PDF

Construction of a bacterial surface display system using split green fluorescent protein (GFP) in Escherichia coli.

Biotechnol Lett

September 2025

Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.

The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.

View Article and Find Full Text PDF

IRF7 drives resistance to oncolytic virotherapy by restricting viral replication and suppressing antitumor immunity.

Biochem Biophys Res Commun

September 2025

State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China. Electronic address:

Oncolytic viruses (OVs) represent a promising approach for cancer immunotherapy by inducing direct tumor lysis and stimulating antitumor immunity. However, tumor-intrinsic resistance remains a major barrier to their efficacy. In this study, we established an OV-resistant MC38 colon cancer model (MC38) and identified interferon regulatory factor 7 (IRF7), a key regulator of type I interferon signaling, as significantly upregulated in resistant cells.

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF