Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The fish oil constituent docosahexaenoic acid (DHA, 22:6 n-3) is a signaling lipid with anti-inflammatory properties. The molecular mechanisms underlying the biological effect of DHA are poorly understood. Here, we report the design, synthesis, and application of a complementary pair of bio-orthogonal, photoreactive probes based on the polyunsaturated scaffold DHA and its oxidative metabolite 17-hydroxydocosahexaenoic acid (17-HDHA). In these probes, an alkyne serves as a handle to introduce a fluorescent reporter group or a biotin-affinity tag via copper(I)-catalyzed azide-alkyne cycloaddition. This pair of chemical probes was used to map specific targets of the omega-3 signaling lipids in primary human macrophages. Prostaglandin reductase 1 (PTGR1) was identified as an interaction partner that metabolizes 17-oxo-DHA, an oxidative metabolite of 17-HDHA. 17-oxo-DHA reduced the formation of pro-inflammatory lipids 5-HETE and LTB4 in human macrophages and neutrophils. Our results demonstrate the potential of comparative photoaffinity protein profiling for the discovery of metabolic enzymes of bioactive lipids and highlight the power of chemical proteomics to uncover new biological insights.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585591PMC
http://dx.doi.org/10.1021/jacs.2c06827DOI Listing

Publication Analysis

Top Keywords

human macrophages
12
comparative photoaffinity
8
omega-3 signaling
8
signaling lipid
8
prostaglandin reductase
8
oxidative metabolite
8
photoaffinity profiling
4
profiling omega-3
4
probes
4
lipid probes
4

Similar Publications

Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME) and tumour-enhanced myelopoiesis in the bone marrow fuels these populations. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for Nfe2l2 (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression.

View Article and Find Full Text PDF

Pancreatic cancer is a highly aggressive malignancy with a dismal prognosis, characterized by a complex tumor microenvironment that promotes immunosuppression and limits the efficacy of immune checkpoint blockade (ICB) therapy. Fibroblast activation protein (FAP) is overexpressed in the tumor stroma and represents a promising target for therapeutic intervention. Here, we developed a novel antibody-drug conjugate (ADC) targeting FAP, and investigated its anti-tumor activity and ability to enhance ICB efficacy in pancreatic cancer.

View Article and Find Full Text PDF

Atherosclerosis, a major cause of cardiovascular diseases, is characterized by the buildup of lipids and chronic inflammation in the arteries, leading to plaque formation and potential rupture. Despite recent advances in single-cell transcriptomics (scRNA-seq), the underlying immune mechanisms and transformations in structural cells driving plaque progression remain incompletely defined. Existing datasets often lack comprehensive coverage and consistent annotations, limiting the utility of downstream analyses.

View Article and Find Full Text PDF

Electronegative LDL strongly induces LRP1 release from human monocytes and macrophages.

Clin Investig Arterioscler

September 2025

Cardiovascular Biochemistry, IR SANT PAU, Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain. Electronic address:

Background: Electronegative LDL (LDL(-)) is a circulant modified LDL with inflammatory properties whose proportion raises in ischemic events. The soluble form of LDL receptor related protein 1 (sLRP1) increases in blood in pathological situations, including ischemic stroke. We aimed to evaluate the effect of LDL(-) on sLRP1 release from monocytes and macrophages.

View Article and Find Full Text PDF

The pharmacological blockade of mineralocorticoid receptors (MR) is a potential therapeutic approach to reduce cardiovascular complications. Recent studies suggest that MR blockers affect several extrarenal tissues, including vascular function. We investigated the effects of a novel non-steroidal selective MR blocker, esaxerenone, on vascular function and atherogenesis.

View Article and Find Full Text PDF