Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Patients with Parkinson's disease (PD) often exhibit difficulties with dexterity during the performance of activities of daily living (ADL) due to dysfunctional supplementary motor area (SMA). The aim of this clinical trial protocol work is to describe how the effectiveness of a combined repetitive transcranial magnetic stimulation (rTMS) over SMA and video-game-based skill training (VBT) in PD will be evaluated. The short and long-term benefits are assessed. A single-blind (patients) stratified (based on Hoehn & Yahr) parallel randomized sham-controlled rTMS-VBT study with a baseline and two follow-up measurements (3 and 12 weeks) is being conducted. These measurements include the dexterity questionnaire 24 (DextQ-24) as a primary outcome, and nine hole peg test and coin rotation task as main secondary dexterity outcomes. Further secondary outcomes will be the subscale II of the movement disorders society unified PD rating scale (MDS-UPDRS) to assess improvements on overall ADL and the Parkinson's Disease Questionnaire-39 to assess quality of life. Thirty-six outpatients (from one neurorehabilitation center) with PD (diagnosis based on brain bank criteria) will be recruited who report difficulties with dexterity in performing ADL. All PD patients will receive a 45-min VBT three times a week for 3 weeks. The PD patients randomized in the experimental group will receive VBT preceded by real rTMS, being intermittent theta burst (iTBS) stimulation sessions. The PD patients randomized to the control group receive a VBT with sham rTMS. The study will provide evidence to determine whether a combined iTBS and VBT skill intervention is more effective than a VBT intervention alone to improve dexterity in PD. The study was approved by the Ethics Committee for Northwest and Central Switzerland (EKNZ), Switzerland 2019-00433. The study will be conducted in accordance with the Helsinki Declaration and the Guidelines of Good Clinical Practice. Informed consent will be signed prior to subject enrolment. Dissemination will include submission to international peer-reviewed professional journals and presentation at international congresses. The study protocol has been registered in the clinicaltrials.gov registry with the identification code: NCT04699149.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9397672PMC
http://dx.doi.org/10.3389/fresc.2021.777981DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
will
9
repetitive transcranial
8
transcranial magnetic
8
magnetic stimulation
8
improve dexterity
8
study protocol
8
difficulties dexterity
8
will receive
8
patients randomized
8

Similar Publications

BackgroundGlaucoma is recognized as the second-leading cause of complete blindness in developed countries and a significant contributor to irreversible vision loss worldwide. Understanding the potential genetic links between neurodegenerative diseases, such as Parkinson's disease, and glaucoma is crucial for developing preventive strategies.MethodsThis study utilized data from Genome-Wide Association Studies databases, focusing on European populations without gender restrictions.

View Article and Find Full Text PDF

Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.

View Article and Find Full Text PDF

Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.

View Article and Find Full Text PDF

Neurodegenerative diseases and spinal cord injuries (SCI) pose a significant burden on the healthcare system globally. Diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease precipitate cognitive, motor, and behavioral deficits. Parallelly, spinal cord injuries produce sensory and motor deficits, which are burdensome psychologically, socially, and economically.

View Article and Find Full Text PDF