98%
921
2 minutes
20
Canonical RNA processing in mammalian mitochondria is defined by tRNAs acting as recognition sites for nucleases to release flanking transcripts. The relevant factors, their structures, and mechanism are well described, but not all mitochondrial transcripts are punctuated by tRNAs, and their mode of processing has remained unsolved. Using Drosophila and mouse models, we demonstrate that non-canonical processing results in the formation of 3' phosphates, and that phosphatase activity by the carbon catabolite repressor 4 domain-containing family member ANGEL2 is required for their hydrolysis. Furthermore, our data suggest that members of the FAST kinase domain-containing protein family are responsible for these 3' phosphates. Our results therefore propose a mechanism for non-canonical RNA processing in metazoan mitochondria, by identifying the role of ANGEL2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525292 | PMC |
http://dx.doi.org/10.1038/s41467-022-33368-9 | DOI Listing |
Nucleic Acids Res
September 2025
Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic.
RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Life-like Materials and Systems, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
Transmembrane signaling is essential for cellular communication, yet reconstituting such mechanisms in synthetic systems remains challenging. Here, we report a simple and robust DNA-based mechanism for transmembrane signaling in synthetic cells using cholesterol-modified single-stranded DNA (Chol-ssDNA). We discovered that anchored Chol-ssDNA spontaneously flips across the membrane of giant unilamellar lipid vesicles (GUVs) in a nucleation-driven, defect-mediated process.
View Article and Find Full Text PDFToxicol Mech Methods
September 2025
Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
Fluoropyrimidines are a class of chemotherapy drugs used to treat various solid tumors. 5-Fluorouracil (5-FU) an antimetabolite in the fluoropyrimidine family, which has shown remarkable efficacy against a variety of solid tumors, is a crucial medication in the treatment of cancer. However, severe organ toxicities frequently restrict its therapeutic potential.
View Article and Find Full Text PDFFood Res Int
November 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
In the present study, cockles were utilized as the raw material to investigate how different salt concentrations and fermentation periods influence the physicochemical indices, microbial community shifts, and volatile flavor components of cockle paste. Through the analysis of volatile flavor substances via GC-IMS, a total of 77 volatile flavor compounds were identified, among which aldehydes accounted for the largest proportion. High-throughput 16S rDNA sequencing was applied to decode the composition of dominant microbiota in the cockle paste samples.
View Article and Find Full Text PDFNeuropsychopharmacol Rep
September 2025
Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan.
Controlling for confounding factors in postmortem brain studies of psychiatric disorders is crucial, particularly in gene expression analyses. Potential confounding factors include sex, age at death, medication history, agonal state, postmortem interval (PMI), tissue storage duration, tissue pH, and RNA integrity number (RIN). pH and RIN are considered particularly important in gene expression analysis because they accurately reflect mRNA quality.
View Article and Find Full Text PDF