A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Counterions under a Surface-Adsorbed Cationic Surfactant Monolayer: Structure and Thermodynamics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The surface adsorption of ionic surfactants is fundamental for many widespread phenomena in life sciences and for a wide range of technological applications. However, direct atomic-resolution structural experimental studies of noncrystalline surface-adsorbed films are scarce. Thus, even the most central physical aspects of these films, such as their charge density, remain uncertain. Consequently, theoretical models based on contradicting assumptions as for the surface films' ionization are widely used for the description and prediction of surface thermodynamics. We employ X-ray reflectivity to obtain the Ångström-scale surface-normal structure of surface-adsorbed films of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in aqueous solutions at several different temperatures and concentrations. In conjunction with published neutron reflectivity data, we determine the surface-normal charge distribution due to the dissociated surfactants' headgroups. The distribution appears to be inconsistent with the Gouy-Chapman model yet consistent with a compact Stern layer model of condensed counterions. The experimental surfactant adsorption thermodynamics conforms well to classical, Langmuir and Kralchevsky, adsorption models. Furthermore, the Kralchevsky model correctly reproduces the observed condensation of counterions, allowing the values of the adsorption parameters to be resolved, based on the combination of the present data and the published surface tension measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c02076DOI Listing

Publication Analysis

Top Keywords

cationic surfactant
8
surface-adsorbed films
8
counterions surface-adsorbed
4
surface-adsorbed cationic
4
surfactant monolayer
4
monolayer structure
4
structure thermodynamics
4
surface
4
thermodynamics surface
4
adsorption
4

Similar Publications